Unverified Commit 32d69e8e authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'develop' into simplify_1_mul_div_ops

parents 8398fb19 bab9502a
mod_test:e

0
12"Modmod_testZ
0



Z
1



b
2



B
\ No newline at end of file
mod_test_different_dtypes:v

0
12"Modmod_test_different_dtypesZ
0



Z
1



b
2



B
\ No newline at end of file
 mod_test_fmod:w

0
12"Mod*
fmod mod_test_fmodZ
0



Z
1



b
2



B
\ No newline at end of file
mod_test_fmod_different_dtypes:

0
12"Mod*
fmodmod_test_fmod_different_dtypesZ
0



Z
1



b
2



B
\ No newline at end of file
mod_test_fmod_half:|

0
12"Mod*
fmodmod_test_fmod_halfZ
0




Z
1




b
2




B
\ No newline at end of file
 mod_test_half:j

0
12"Mod mod_test_halfZ
0




Z
1




b
2




B
\ No newline at end of file
......@@ -636,11 +636,31 @@ TEST_CASE(constant_scalar_test)
EXPECT(p == prog);
}
TEST_CASE(constant_empty_scalar_int64_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
mm->add_literal(migraphx::literal{migraphx::shape::int64_type});
auto prog = optimize_onnx("constant_empty_scalar_int64_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(constant_one_val_int64_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
mm->add_literal(migraphx::literal{migraphx::shape{migraphx::shape::int64_type, {1}}, {1}});
auto prog = optimize_onnx("constant_one_val_int64_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(const_of_shape_empty_input_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
mm->add_literal(migraphx::literal());
mm->add_literal(migraphx::literal(migraphx::shape::int32_type));
migraphx::shape s(migraphx::shape::int64_type, {1}, {0});
std::vector<int64_t> vec(s.elements(), 10);
mm->add_literal(migraphx::literal(s, vec));
......@@ -796,6 +816,166 @@ TEST_CASE(conv_bn_relu_maxpool_test)
EXPECT(p == prog);
}
TEST_CASE(conv_dynamic_batch_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", {migraphx::shape::float_type, {{1, 6, 0}, {3, 3, 0}, {5, 5, 0}, {5, 5, 0}}});
auto l1 = mm->add_parameter("1", {migraphx::shape::float_type, {1, 3, 3, 3}});
auto c0 = mm->add_instruction(
migraphx::make_op("convolution",
{{"padding", {0, 0}}, {"stride", {1, 1}}, {"dilation", {1, 1}}}),
l0,
l1);
mm->add_return({c0});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 6, 0};
auto prog = migraphx::parse_onnx("conv_dynamic_batch_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(conv_dynamic_img_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {5, 10, 0}, {5, 10, 0}}});
auto l1 = mm->add_parameter("1", {migraphx::shape::float_type, {1, 3, 3, 3}});
auto c0 = mm->add_instruction(
migraphx::make_op("convolution",
{{"padding", {0, 0}}, {"stride", {1, 1}}, {"dilation", {1, 1}}}),
l0,
l1);
mm->add_return({c0});
migraphx::onnx_options options;
options.default_dyn_dim_value = {5, 10, 0};
auto prog = migraphx::parse_onnx("conv_dynamic_img_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(conv_dynamic_weights_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("0", {migraphx::shape::float_type, {1, 3, 5, 5}});
auto l1 = mm->add_parameter(
"1", {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {2, 4, 0}, {2, 4, 0}}});
auto c0 = mm->add_instruction(
migraphx::make_op("convolution",
{{"padding", {0, 0}}, {"stride", {1, 1}}, {"dilation", {1, 1}}}),
l0,
l1);
mm->add_return({c0});
migraphx::onnx_options options;
options.default_dyn_dim_value = {2, 4, 0};
auto prog = migraphx::parse_onnx("conv_dynamic_weights_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(conv_dynamic_img_and_weights_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {5, 10, 0}, {5, 10, 0}}});
auto l1 = mm->add_parameter(
"1", {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {2, 4, 0}, {2, 4, 0}}});
auto c0 = mm->add_instruction(
migraphx::make_op("convolution",
{{"padding", {0, 0}}, {"stride", {1, 1}}, {"dilation", {1, 1}}}),
l0,
l1);
mm->add_return({c0});
migraphx::onnx_options options;
options.default_dyn_dim_value = {5, 10, 0};
options.map_dyn_input_dims["1"] = {{1, 1, 0}, {3, 3, 0}, {2, 4, 0}, {2, 4, 0}};
auto prog = migraphx::parse_onnx("conv_dynamic_img_and_weights_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(conv_dynamic_batch_same_upper)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", {migraphx::shape::float_type, {{1, 10, 0}, {3, 3, 0}, {5, 5, 0}, {5, 5, 0}}});
auto l1 = mm->add_parameter("1", {migraphx::shape::float_type, {1, 3, 3, 3}});
auto c0 =
mm->add_instruction(migraphx::make_op("convolution",
{{"padding", {1, 1, 1, 1}},
{"stride", {1, 1}},
{"dilation", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::same},
{"use_dynamic_same_auto_pad", false}}),
l0,
l1);
mm->add_return({c0});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 10, 0};
auto prog = migraphx::parse_onnx("conv_dynamic_batch_same_upper_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(conv_dynamic_img_same_upper)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {5, 10, 0}, {5, 10, 0}}});
auto l1 = mm->add_parameter("1", {migraphx::shape::float_type, {1, 3, 3, 3}});
auto c0 = mm->add_instruction(
migraphx::make_op("convolution",
{{"padding", {0, 0}},
{"stride", {1, 1}},
{"dilation", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::same_upper},
{"use_dynamic_same_auto_pad", true}}),
l0,
l1);
mm->add_return({c0});
migraphx::onnx_options options;
options.default_dyn_dim_value = {5, 10, 0};
auto prog = migraphx::parse_onnx("conv_dynamic_img_same_upper_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(conv_dynamic_kernel_same_lower)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("0", {migraphx::shape::float_type, {1, 3, 5, 5}});
auto l1 = mm->add_parameter(
"1", {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {2, 4, 0}, {2, 4, 0}}});
auto c0 = mm->add_instruction(
migraphx::make_op("convolution",
{{"padding", {0, 0}},
{"stride", {1, 1}},
{"dilation", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::same_lower},
{"use_dynamic_same_auto_pad", true}}),
l0,
l1);
mm->add_return({c0});
migraphx::onnx_options options;
options.default_dyn_dim_value = {2, 4, 0};
auto prog = migraphx::parse_onnx("conv_dynamic_kernel_same_lower_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(conv_relu_maxpool_test)
{
migraphx::program p;
......@@ -2370,8 +2550,9 @@ TEST_CASE(instance_norm_test)
auto l0 = mm->add_instruction(migraphx::make_op("sqdiff"), x, mean_bcast);
auto variance = mm->add_instruction(migraphx::make_op("reduce_mean", {{"axes", {2, 3}}}), l0);
auto l1 = mm->add_instruction(migraphx::make_op("sub"), x, mean_bcast);
auto epsilon_literal = mm->add_literal(1e-5f);
auto epsilon_bcast = mm->add_instruction(
auto epsilon_literal =
mm->add_literal(migraphx::literal{migraphx::shape{migraphx::shape::float_type}, {1e-5}});
auto epsilon_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", dims}}), epsilon_literal);
auto variance_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", dims}}), variance);
......@@ -2390,6 +2571,60 @@ TEST_CASE(instance_norm_test)
EXPECT(p == prog);
}
TEST_CASE(instance_norm_half_test)
{
std::vector<size_t> dims{1, 2, 3, 3};
migraphx::shape s1{migraphx::shape::half_type, dims};
migraphx::shape s2{migraphx::shape::half_type, {2}};
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("0", s1);
auto scale = mm->add_parameter("1", s2);
auto bias = mm->add_parameter("2", s2);
auto mean = mm->add_instruction(migraphx::make_op("reduce_mean", {{"axes", {2, 3}}}), x);
auto mean_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", dims}}), mean);
auto l0 = mm->add_instruction(migraphx::make_op("sqdiff"), x, mean_bcast);
auto variance = mm->add_instruction(migraphx::make_op("reduce_mean", {{"axes", {2, 3}}}), l0);
auto l1 = mm->add_instruction(migraphx::make_op("sub"), x, mean_bcast);
auto epsilon_literal =
mm->add_literal(migraphx::literal{migraphx::shape{migraphx::shape::half_type}, {1e-5}});
auto epsilon_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", dims}}), epsilon_literal);
auto variance_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", dims}}), variance);
auto l2 = mm->add_instruction(migraphx::make_op("add"), variance_bcast, epsilon_bcast);
auto l3 = mm->add_instruction(migraphx::make_op("rsqrt"), l2);
auto l4 = mm->add_instruction(migraphx::make_op("mul"), l1, l3);
auto scale_bcast = mm->add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), scale);
auto bias_bcast = mm->add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), bias);
auto l5 = mm->add_instruction(migraphx::make_op("mul"), l4, scale_bcast);
mm->add_instruction(migraphx::make_op("add"), l5, bias_bcast);
auto prog = optimize_onnx("instance_norm_half_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(instance_norm_type_mismatch_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("instance_norm_type_mismatch_test.onnx"); }));
}
TEST_CASE(instance_norm_invalid_type_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("instance_norm_invalid_type_test.onnx"); }));
}
TEST_CASE(instance_norm_nonbroadcastable_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("instance_norm_nonbroadcastable_test.onnx"); }));
}
TEST_CASE(leaky_relu_test)
{
migraphx::program p;
......@@ -2954,6 +3189,76 @@ TEST_CASE(min_test)
EXPECT(p == prog);
}
TEST_CASE(mod_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input0 = mm->add_parameter("0", migraphx::shape{migraphx::shape::int32_type, {3, 3, 3}});
auto input1 = mm->add_parameter("1", migraphx::shape{migraphx::shape::int32_type, {3, 3, 3}});
mm->add_instruction(migraphx::make_op("mod"), input0, input1);
auto prog = optimize_onnx("mod_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(mod_test_half)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("mod_test_half.onnx"); }));
}
TEST_CASE(mod_test_different_dtypes)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input0 = mm->add_parameter("0", migraphx::shape{migraphx::shape::int16_type, {3, 3, 3}});
auto input1 = mm->add_parameter("1", migraphx::shape{migraphx::shape::int32_type, {3, 3, 3}});
add_common_op(*mm, migraphx::make_op("mod"), {input0, input1});
auto prog = optimize_onnx("mod_test_different_dtypes.onnx");
EXPECT(p == prog);
}
TEST_CASE(mod_test_fmod)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input0 = mm->add_parameter("0", migraphx::shape{migraphx::shape::float_type, {3, 3, 3}});
auto input1 = mm->add_parameter("1", migraphx::shape{migraphx::shape::float_type, {3, 3, 3}});
mm->add_instruction(migraphx::make_op("fmod"), input0, input1);
auto prog = optimize_onnx("mod_test_fmod.onnx");
EXPECT(p == prog);
}
TEST_CASE(mod_test_fmod_half)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input0 = mm->add_parameter("0", migraphx::shape{migraphx::shape::half_type, {3, 3, 3}});
auto input1 = mm->add_parameter("1", migraphx::shape{migraphx::shape::half_type, {3, 3, 3}});
mm->add_instruction(migraphx::make_op("fmod"), input0, input1);
auto prog = optimize_onnx("mod_test_fmod_half.onnx");
EXPECT(p == prog);
}
TEST_CASE(mod_test_fmod_different_dtypes)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input0 = mm->add_parameter("0", migraphx::shape{migraphx::shape::float_type, {3, 3, 3}});
auto input1 = mm->add_parameter("1", migraphx::shape{migraphx::shape::int32_type, {3, 3, 3}});
add_common_op(*mm, migraphx::make_op("fmod"), {input0, input1});
auto prog = optimize_onnx("mod_test_fmod_different_dtypes.onnx");
EXPECT(p == prog);
}
TEST_CASE(multinomial_test)
{
migraphx::program p;
......@@ -3777,7 +4082,7 @@ TEST_CASE(reducesum_empty_axes_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
mm->add_literal({});
mm->add_literal(migraphx::literal{migraphx::shape::int64_type});
auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {3, 4, 5, 6}});
auto l1 = mm->add_instruction(migraphx::make_op("reduce_sum", {{"axes", {0, 1, 2, 3}}}), x);
auto r = mm->add_instruction(migraphx::make_op("squeeze", {{"axes", {0, 1, 2, 3}}}), l1);
......@@ -3792,7 +4097,7 @@ TEST_CASE(reducesum_noop_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
mm->add_literal({});
mm->add_literal(migraphx::literal{migraphx::shape::int64_type});
auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {3, 4, 5, 6}});
mm->add_return({x});
auto prog = migraphx::parse_onnx("reducesum_noop_test.onnx");
......@@ -5002,7 +5307,7 @@ TEST_CASE(squeeze_empty_axes_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
mm->add_literal({});
mm->add_literal(migraphx::literal{migraphx::shape::int64_type});
auto l0 = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {3, 1, 5, 1}});
auto l1 = mm->add_instruction(migraphx::make_op("squeeze"), l0);
mm->add_return({l1});
......
......@@ -631,6 +631,120 @@ TEST_CASE(mean_integral_test)
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(mod_test)
{
migraphx::program p = migraphx::parse_onnx("mod_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s{migraphx::shape::int32_type, {3, 3, 3}};
std::vector<int32_t> a = {-4, 7, 5, 4, -7, 8, -4, 7, 5, 4, -7, 8, -4, 7,
5, 4, -7, 8, -4, 7, 5, 4, -7, 8, -4, 7, 5};
std::vector<int32_t> b = {2, -3, 8, -2, 3, 5, 2, -3, 8, -2, 3, 5, 2, -3,
8, -2, 3, 5, 2, -3, 8, -2, 3, 5, 2, -3, 8};
migraphx::parameter_map p_map;
p_map["0"] = migraphx::argument(s, a.data());
p_map["1"] = migraphx::argument(s, b.data());
auto result = p.eval(p_map).back();
std::vector<int32_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<int32_t> gold = {0, -2, 5, 0, 2, 3, 0, -2, 5, 0, 2, 3, 0, -2,
5, 0, 2, 3, 0, -2, 5, 0, 2, 3, 0, -2, 5};
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(mod_test_different_types)
{
migraphx::program p = migraphx::parse_onnx("mod_test_different_dtypes.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s_int16{migraphx::shape::int16_type, {3, 3, 3}};
migraphx::shape s_int32{migraphx::shape::int32_type, {3, 3, 3}};
std::vector<int16_t> a = {-4, 7, 5, 4, -7, 8, -4, 7, 5, 4, -7, 8, -4, 7,
5, 4, -7, 8, -4, 7, 5, 4, -7, 8, -4, 7, 5};
std::vector<int32_t> b = {2, -3, 8, -2, 3, 5, 2, -3, 8, -2, 3, 5, 2, -3,
8, -2, 3, 5, 2, -3, 8, -2, 3, 5, 2, -3, 8};
migraphx::parameter_map p_map;
p_map["0"] = migraphx::argument(s_int16, a.data());
p_map["1"] = migraphx::argument(s_int32, b.data());
auto result = p.eval(p_map).back();
std::vector<int32_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<int32_t> gold = {0, -2, 5, 0, 2, 3, 0, -2, 5, 0, 2, 3, 0, -2,
5, 0, 2, 3, 0, -2, 5, 0, 2, 3, 0, -2, 5};
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(mod_test_fmod)
{
migraphx::program p = migraphx::parse_onnx("mod_test_fmod.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s{migraphx::shape::float_type, {3, 3, 3}};
std::vector<float> a = {1.2, -2.2, 3.3, 4.1, -5.4, 6.7, 7.8, -8.4, 9.9,
10.7, 11.2, 12.3, 13.9, -14.2, 15.8, 16.6, 17.9, 18.2,
19.0, 20.0, 21.0, -22.0, 23.0, -24.0, 25.2, 26.3, 27.1};
std::vector<float> b = {30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4};
migraphx::parameter_map p_map;
p_map["0"] = migraphx::argument(s, a.data());
p_map["1"] = migraphx::argument(s, b.data());
auto result = p.eval(p_map).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{1.2, -2.2, 3.3, 4.1, -5.4, 6.7, 7.8, -8.4, 9.9,
10.7, 11.2, 12.3, 13.9, -14.2, 15.8, 1.6, 3.9, 5.2,
7.0, 9.0, 1.0, -4.0, 7.0, -3.0, 1.2, 1.3, 3.1};
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(mod_test_fmod_different_types)
{
migraphx::program p = migraphx::parse_onnx("mod_test_fmod_different_dtypes.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s_float{migraphx::shape::float_type, {3, 3, 3}};
migraphx::shape s_int{migraphx::shape::int32_type, {3, 3, 3}};
std::vector<float> a = {1.2, -2.2, 3.3, 4.1, -5.4, 6.7, 7.8, -8.4, 9.9,
10.7, 11.2, 12.3, 13.9, -14.2, 15.8, 16.6, 17.9, 18.2,
19.0, 20.0, 21.0, -22.0, 23.0, -24.0, 25.2, 26.3, 27.1};
std::vector<int32_t> b = {30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4};
migraphx::parameter_map p_map;
p_map["0"] = migraphx::argument(s_float, a.data());
p_map["1"] = migraphx::argument(s_int, b.data());
auto result = p.eval(p_map).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{1.2, -2.2, 3.3, 4.1, -5.4, 6.7, 7.8, -8.4, 9.9,
10.7, 11.2, 12.3, 13.9, -14.2, 15.8, 1.6, 3.9, 5.2,
7.0, 9.0, 1.0, -4.0, 7.0, -3.0, 1.2, 1.3, 3.1};
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(nonzero_test)
{
migraphx::program p = migraphx::parse_onnx("nonzero_dynamic_test.onnx");
......
......@@ -144,6 +144,7 @@ TEST_CASE(convolution_shape)
throws_shape(migraphx::make_op("convolution"), input2, weights2);
throws_shape(migraphx::make_op("convolution"), input2, weights);
// 1D convolution
migraphx::shape output_1d{migraphx::shape::float_type, {4, 4, 1}};
migraphx::shape input_1d{migraphx::shape::float_type, {4, 3, 3}};
migraphx::shape weights_1d{migraphx::shape::float_type, {4, 3, 3}};
......@@ -153,6 +154,11 @@ TEST_CASE(convolution_shape)
input_1d,
weights_1d);
// channel numbers mismatch
weights_1d = {migraphx::shape::float_type, {4, 8, 3}};
throws_shape(migraphx::make_op("convolution"), input_1d, weights_1d);
// 3D convolution
migraphx::shape output_3d{migraphx::shape::float_type, {4, 4, 1, 1, 1}};
migraphx::shape input_3d{migraphx::shape::float_type, {4, 3, 3, 3, 3}};
migraphx::shape weights_3d{migraphx::shape::float_type, {4, 3, 3, 3, 3}};
......@@ -164,6 +170,130 @@ TEST_CASE(convolution_shape)
weights_3d);
throws_shape(migraphx::make_op("convolution"), input_3d, weights_3d);
// dynamic batch
migraphx::shape input_dyn_shape{migraphx::shape::float_type,
{{1, 100, 0}, {3, 3, 0}, {5, 5, 0}, {5, 5, 0}}};
migraphx::shape weights_shape{migraphx::shape::float_type, {1, 3, 3, 3}};
migraphx::shape output_dyn_shape{migraphx::shape::float_type,
{{
1,
100,
0,
},
{1, 1, 0},
{3, 3, 0},
{3, 3, 0}}};
expect_shape(output_dyn_shape,
migraphx::make_op("convolution",
{{"padding", {0, 0}}, {"stride", {1, 1}}, {"dilation", {1, 1}}}),
input_dyn_shape,
weights_shape);
// dynamic image
input_dyn_shape = {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {5, 20, 0}, {5, 20, 0}}};
weights_shape = {migraphx::shape::float_type, {1, 3, 3, 3}};
output_dyn_shape = {migraphx::shape::float_type,
{{
1,
1,
0,
},
{1, 1, 0},
{3, 18, 0},
{3, 18, 0}}};
expect_shape(output_dyn_shape,
migraphx::make_op("convolution",
{{"padding", {0, 0}}, {"stride", {1, 1}}, {"dilation", {1, 1}}}),
input_dyn_shape,
weights_shape);
// dynamic weights
input_dyn_shape = {migraphx::shape::float_type, {1, 3, 10, 10}};
weights_shape = {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {2, 4, 0}, {2, 4, 0}}};
output_dyn_shape = {migraphx::shape::float_type,
{{
1,
1,
0,
},
{1, 1, 0},
{7, 9, 0},
{7, 9, 0}}};
expect_shape(output_dyn_shape,
migraphx::make_op("convolution",
{{"padding", {0, 0}}, {"stride", {1, 1}}, {"dilation", {1, 1}}}),
input_dyn_shape,
weights_shape);
// dynamic img and weights
input_dyn_shape = {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {5, 20, 0}, {5, 20, 0}}};
weights_shape = {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {2, 4, 0}, {2, 4, 0}}};
output_dyn_shape = {migraphx::shape::float_type,
{{
1,
1,
0,
},
{1, 1, 0},
{2, 19, 0},
{2, 19, 0}}};
expect_shape(output_dyn_shape,
migraphx::make_op("convolution",
{{"padding", {0, 0}}, {"stride", {1, 1}}, {"dilation", {1, 1}}}),
input_dyn_shape,
weights_shape);
// input attr shape mismatch
input_dyn_shape = {migraphx::shape::float_type,
{{1, 100, 0}, {3, 3, 0}, {5, 5, 0}, {5, 5, 0}, {5, 5, 0}}};
weights_shape = {migraphx::shape::float_type, {1, 3, 3, 3, 3}};
throws_shape(migraphx::make_op("convolution",
{{"padding", {0, 0}}, {"stride", {1, 1}}, {"dilation", {1, 1}}}),
input_dyn_shape,
weights_shape);
// auto_pad dynamic batch
input_dyn_shape = {migraphx::shape::float_type, {{1, 10, 0}, {3, 3, 0}, {5, 5, 0}, {5, 5, 0}}};
weights_shape = {migraphx::shape::float_type, {1, 3, 3, 3}};
output_dyn_shape = {migraphx::shape::float_type, {{1, 10, 0}, {1, 1, 0}, {5, 5, 0}, {5, 5, 0}}};
expect_shape(output_dyn_shape,
migraphx::make_op("convolution",
{{"stride", {1, 1}},
{"dilation", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::same_upper},
{"use_dynamic_same_auto_pad", true}}),
input_dyn_shape,
weights_shape);
// auto_pad dynamic img
input_dyn_shape = {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {5, 10, 0}, {5, 10, 0}}};
weights_shape = {migraphx::shape::float_type, {1, 3, 3, 3}};
output_dyn_shape = {migraphx::shape::float_type,
{{1, 1, 0}, {1, 1, 0}, {5, 10, 0}, {5, 10, 0}}};
expect_shape(output_dyn_shape,
migraphx::make_op("convolution",
{{"stride", {1, 1}},
{"dilation", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::same_upper},
{"use_dynamic_same_auto_pad", true}}),
input_dyn_shape,
weights_shape);
// auto_pad dynamic kernel
input_dyn_shape = {migraphx::shape::float_type,
{{1, 1, 0}, {3, 3, 0}, {10, 10, 0}, {10, 10, 0}}};
weights_shape = {migraphx::shape::float_type, {{1, 1, 0}, {3, 3, 0}, {2, 4, 0}, {2, 4, 0}}};
output_dyn_shape = {migraphx::shape::float_type,
{{1, 1, 0}, {1, 1, 0}, {10, 10, 0}, {10, 10, 0}}};
expect_shape(output_dyn_shape,
migraphx::make_op("convolution",
{{"stride", {1, 1}},
{"dilation", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::same_lower},
{"use_dynamic_same_auto_pad", true}}),
input_dyn_shape,
weights_shape);
}
TEST_CASE(contiguous_shape)
......
......@@ -873,6 +873,436 @@ TEST_CASE(contiguous_test)
EXPECT(migraphx::verify_range(results_vector, data));
}
TEST_CASE(conv_dynamic_batch_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape input_dyn_shape{migraphx::shape::float_type,
{{1, 100, 0}, {3, 3, 0}, {4, 4, 0}, {4, 4, 0}}};
migraphx::shape weights_shape{migraphx::shape::float_type, {2, 3, 3, 3}};
auto input = mm->add_parameter("X", input_dyn_shape);
auto weights = mm->add_parameter("W", weights_shape);
mm->add_instruction(migraphx::make_op("convolution", {{"padding", {1, 1}}, {"stride", {2, 2}}}),
input,
weights);
p.compile(migraphx::ref::target{});
std::vector<float> a = {
2.71567607, -0.9960829, 0.91671127, 0.28140706, 0.63235772, 0.08077253, 0.80927712,
-0.59108931, -1.05421555, -2.76622486, -0.85044265, -0.52049929, 0.67726439, -0.65290606,
0.02345525, -0.33579525, 0.38901961, 1.05473483, -1.31188095, 1.8963089, -0.07265259,
0.947339, 0.41949373, -0.70814759, 0.25892952, 1.07311416, 1.2571274, -0.62318051,
-0.19951548, -0.94232577, -0.29393643, 0.42292568, -0.80230367, 1.40909171, 0.63617158,
0.13900366, 1.09253144, -0.15265895, 1.54781747, 0.72780299, 1.09189606, -0.38068101,
0.97057933, -0.58958799, 1.56188643, 0.21474874, 0.58725154, -1.27097559, -0.03024297,
1.09437096, -0.4897908, 0.34838957, -1.31042492, -1.69069934, 0.86956722, -0.40457946,
0.46691212, 1.29273605, 0.26464137, 0.22073045, -1.02178168, 0.22163901, -1.84387338,
0.75522131, -0.45775682, -0.42241111, -1.50944722, 1.07256448, -1.95876884, -0.28106022,
0.3341668, 2.13129425, -1.14728117, -1.06555498, -0.298444, -0.88322699, -0.65866792,
-2.06007552, 0.01374334, 0.45612028, 0.52715492, 1.01914406, -1.72659791, 0.80650896,
0.16860051, 2.24112225, -0.78620857, 0.36566174, -0.07020134, -0.47976932, -0.68230027,
-0.94711417, -0.54506505, 1.66504931, -0.71860826, 0.61132306};
std::vector<float> c = {
-0.14601797, -0.13000923, 0.06521662, 0.06178288, -0.11083675, 0.10154136, 0.09990512,
0.06030385, -0.11374587, -0.17523311, -0.14344215, 0.17802463, 0.06300922, -0.15325832,
0.07066704, 0.05166031, 0.00615084, -0.02606523, 0.08083995, -0.17913306, 0.0624622,
0.0735731, -0.04198661, -0.0164391, -0.06374192, 0.16569914, 0.10681538, 0.07370754,
0.02802075, 0.00282027, 0.15104802, -0.11084409, -0.00197773, 0.07924436, 0.03528272,
0.04765259, -0.15896152, 0.07917164, 0.12125669, -0.1154705, -0.11999125, 0.12749968,
-0.06269585, 0.18658121, -0.03944227, 0.0111798, -0.17731084, 0.11789055, -0.09982193,
0.08142821, 0.0729029, 0.11303909, 0.12735154, 0.03885292};
std::vector<float> sol = {-0.20817225,
0.87965256,
0.14958936,
-1.24887264,
-0.06540672,
0.20778663,
0.40456355,
-0.99900877,
0.4917807,
0.1994698,
0.64205718,
0.37798831,
-0.25315839,
0.44276932,
-0.16138598,
0.79344082};
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {2, 3, 4, 4}};
migraphx::parameter_map params0;
params0["X"] = migraphx::argument(input_fixed_shape0, a.data());
params0["W"] = migraphx::argument(weights_shape, c.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(64);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, sol));
a = {2.71567607, -0.9960829, 0.91671127, 0.28140706, 0.63235772, 0.08077253, 0.80927712,
-0.59108931, -1.05421555, -2.76622486, -0.85044265, -0.52049929, 0.67726439, -0.65290606,
0.02345525, -0.33579525, 0.38901961, 1.05473483, -1.31188095, 1.8963089, -0.07265259,
0.947339, 0.41949373, -0.70814759, 0.25892952, 1.07311416, 1.2571274, -0.62318051,
-0.19951548, -0.94232577, -0.29393643, 0.42292568, -0.80230367, 1.40909171, 0.63617158,
0.13900366, 1.09253144, -0.15265895, 1.54781747, 0.72780299, 1.09189606, -0.38068101,
0.97057933, -0.58958799, 1.56188643, 0.21474874, 0.58725154, -1.27097559, -0.03024297,
1.09437096, -0.4897908, 0.34838957, -1.31042492, -1.69069934, 0.86956722, -0.40457946,
0.46691212, 1.29273605, 0.26464137, 0.22073045, -1.02178168, 0.22163901, -1.84387338,
0.75522131, -0.45775682, -0.42241111, -1.50944722, 1.07256448, -1.95876884, -0.28106022,
0.3341668, 2.13129425, -1.14728117, -1.06555498, -0.298444, -0.88322699, -0.65866792,
-2.06007552, 0.01374334, 0.45612028, 0.52715492, 1.01914406, -1.72659791, 0.80650896,
0.16860051, 2.24112225, -0.78620857, 0.36566174, -0.07020134, -0.47976932, -0.68230027,
-0.94711417, -0.54506505, 1.66504931, -0.71860826, 0.61132306};
c = {-0.14601797, -0.13000923, 0.06521662, 0.06178288, -0.11083675, 0.10154136, 0.09990512,
0.06030385, -0.11374587, -0.17523311, -0.14344215, 0.17802463, 0.06300922, -0.15325832,
0.07066704, 0.05166031, 0.00615084, -0.02606523, 0.08083995, -0.17913306, 0.0624622,
0.0735731, -0.04198661, -0.0164391, -0.06374192, 0.16569914, 0.10681538, 0.07370754,
0.02802075, 0.00282027, 0.15104802, -0.11084409, -0.00197773, 0.07924436, 0.03528272,
0.04765259, -0.15896152, 0.07917164, 0.12125669, -0.1154705, -0.11999125, 0.12749968,
-0.06269585, 0.18658121, -0.03944227, 0.0111798, -0.17731084, 0.11789055, -0.09982193,
0.08142821, 0.0729029, 0.11303909, 0.12735154, 0.03885292};
sol = {-0.20817225,
0.87965256,
0.14958936,
-1.24887264,
-0.06540672,
0.20778663,
0.40456355,
-0.99900877};
migraphx::shape input_fixed_shape1{migraphx::shape::float_type, {1, 3, 4, 4}};
migraphx::parameter_map params1;
params1["X"] = migraphx::argument(input_fixed_shape1, a.data());
params1["W"] = migraphx::argument(weights_shape, c.data());
result = p.eval(params1).back();
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, sol));
}
TEST_CASE(conv_dynamic_img_shape_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape input_dyn_shape{migraphx::shape::float_type,
{{1, 1, 0}, {3, 3, 0}, {4, 6, 0}, {4, 6, 0}}};
migraphx::shape weights_shape{migraphx::shape::float_type, {1, 3, 3, 3}};
auto input = mm->add_parameter("X", input_dyn_shape);
auto weights = mm->add_parameter("W", weights_shape);
mm->add_instruction(migraphx::make_op("convolution", {{"padding", {0, 0}}, {"stride", {1, 1}}}),
input,
weights);
p.compile(migraphx::ref::target{});
std::vector<float> a = {0.28007596, 0.46114671, 0.12171969, 0.52260835, 0.40916841, 0.07163955,
0.09896668, 0.98628836, 0.69406788, 0.44868846, 0.64017681, 0.27048886,
0.30187397, 0.07334207, 0.05258557, 0.80747513, 0.81330534, 0.00497161,
0.33005534, 0.08908686, 0.46794691, 0.61768946, 0.55104806, 0.13406187,
0.70244284, 0.61296941, 0.46742536, 0.29712714, 0.91839388, 0.0834397,
0.14476327, 0.37857075, 0.25922384, 0.61620963, 0.69455439, 0.70389431,
0.77388606, 0.1752363, 0.74631394, 0.24604889, 0.53600244, 0.22116457,
0.81217463, 0.10789447, 0.43083784, 0.63371852, 0.69742316, 0.09536905};
std::vector<float> c = {0.98411968, 0.2899219, 0.44638833, 0.30390816, 0.03989896, 0.2445332,
0.32700131, 0.57517075, 0.06956476, 0.93079306, 0.19882314, 0.52940601,
0.35624753, 0.35938406, 0.9111428, 0.88923574, 0.61040283, 0.2797513,
0.15479768, 0.46534674, 0.16970931, 0.49704618, 0.07062198, 0.01678321,
0.53150934, 0.39244495, 0.9963813};
std::vector<float> sol = {6.1329393, 4.3199925, 5.448438, 3.8497565};
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {1, 3, 4, 4}};
migraphx::parameter_map params0;
params0["X"] = migraphx::argument(input_fixed_shape0, a.data());
params0["W"] = migraphx::argument(weights_shape, c.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(72);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, sol));
a = {0.95600171, 0.20768181, 0.82844489, 0.14928212, 0.51280462, 0.1359196, 0.68903648,
0.84174772, 0.425509, 0.956926, 0.82533291, 0.33821531, 0.57576055, 0.75330186,
0.82710394, 0.93343847, 0.14499469, 0.74558021, 0.13935139, 0.90652876, 0.22611443,
0.85323975, 0.30631787, 0.96983037, 0.51783421, 0.32247456, 0.28243352, 0.605865,
0.33376446, 0.67864877, 0.15442507, 0.24977552, 0.86989425, 0.60036782, 0.26198306,
0.1494149, 0.13678915, 0.24892094, 0.38282467, 0.64907906, 0.83756376, 0.77603195,
0.33951558, 0.14856874, 0.45701939, 0.43786436, 0.57421759, 0.37326922, 0.63382506,
0.11464436, 0.23309047, 0.76724102, 0.98712427, 0.80800108, 0.84296564, 0.79568268,
0.45684131, 0.73867068, 0.57845499, 0.45073557, 0.27102442, 0.86460315, 0.06865567,
0.81673446, 0.881835, 0.42351639, 0.83322931, 0.34101671, 0.51979151, 0.54920645,
0.19287718, 0.33321689, 0.27752456, 0.45755893, 0.67484562, 0.68383122, 0.52361312,
0.46437257, 0.50862936, 0.32460429, 0.1726007, 0.29933345, 0.64856728, 0.06471591,
0.63370843, 0.27900152, 0.18595992, 0.48904812, 0.35368508, 0.09620202};
c = {0.709561, 0.7916206, 0.0443115, 0.62592275, 0.2498623, 0.42725624, 0.7905135,
0.53160169, 0.01303743, 0.01987505, 0.39041803, 0.89530203, 0.23155373, 0.44435213,
0.14407301, 0.80968594, 0.38216188, 0.35692557, 0.2568538, 0.83587388, 0.43654904,
0.04974508, 0.80375029, 0.25350374, 0.1820275, 0.23369029, 0.54358755};
sol = {6.305986,
5.564665,
6.122996,
5.7262855,
5.5546584,
5.779489,
5.798161,
5.160476,
6.702436,
5.4851074,
6.227567,
5.2016754};
migraphx::shape input_fixed_shape1{migraphx::shape::float_type, {1, 3, 6, 5}};
migraphx::parameter_map params1;
params1["X"] = migraphx::argument(input_fixed_shape1, a.data());
params1["W"] = migraphx::argument(weights_shape, c.data());
result = p.eval(params1).back();
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, sol));
}
TEST_CASE(conv_dynamic_weights_shape_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape input_shape{migraphx::shape::float_type, {1, 3, 4, 4}};
migraphx::shape weights_shape{migraphx::shape::float_type,
{{1, 1, 0}, {3, 3, 0}, {2, 3, 0}, {2, 3, 0}}};
auto input = mm->add_parameter("X", input_shape);
auto weights = mm->add_parameter("W", weights_shape);
mm->add_instruction(migraphx::make_op("convolution", {{"padding", {0, 0}}, {"stride", {1, 1}}}),
input,
weights);
p.compile(migraphx::ref::target{});
std::vector<float> a = {0.28007596, 0.46114671, 0.12171969, 0.52260835, 0.40916841, 0.07163955,
0.09896668, 0.98628836, 0.69406788, 0.44868846, 0.64017681, 0.27048886,
0.30187397, 0.07334207, 0.05258557, 0.80747513, 0.81330534, 0.00497161,
0.33005534, 0.08908686, 0.46794691, 0.61768946, 0.55104806, 0.13406187,
0.70244284, 0.61296941, 0.46742536, 0.29712714, 0.91839388, 0.0834397,
0.14476327, 0.37857075, 0.25922384, 0.61620963, 0.69455439, 0.70389431,
0.77388606, 0.1752363, 0.74631394, 0.24604889, 0.53600244, 0.22116457,
0.81217463, 0.10789447, 0.43083784, 0.63371852, 0.69742316, 0.09536905};
std::vector<float> c = {0.98411968,
0.2899219,
0.44638833,
0.30390816,
0.03989896,
0.2445332,
0.32700131,
0.57517075,
0.06956476,
0.93079306,
0.19882314,
0.52940601};
std::vector<float> sol = {1.9939406,
2.2703054,
1.8896171,
2.062202,
2.3035214,
1.629366,
2.1606991,
2.1917608,
1.6797699};
migraphx::shape weight_fixed_shape0{migraphx::shape::float_type, {1, 3, 2, 2}};
migraphx::parameter_map params0;
params0["X"] = migraphx::argument(input_shape, a.data());
params0["W"] = migraphx::argument(weight_fixed_shape0, c.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(72);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, sol));
c = {0.98411968, 0.2899219, 0.44638833, 0.30390816, 0.03989896, 0.2445332, 0.32700131,
0.57517075, 0.06956476, 0.93079306, 0.19882314, 0.52940601, 0.35624753, 0.35938406,
0.9111428, 0.88923574, 0.61040283, 0.2797513, 0.15479768, 0.46534674, 0.16970931,
0.49704618, 0.07062198, 0.01678321, 0.53150934, 0.39244495, 0.9963813};
sol = {6.1329393, 4.3199925, 5.448438, 3.8497565};
migraphx::shape weights_fixed_shape1{migraphx::shape::float_type, {1, 3, 3, 3}};
migraphx::parameter_map params1;
params1["X"] = migraphx::argument(input_shape, a.data());
params1["W"] = migraphx::argument(weights_fixed_shape1, c.data());
result = p.eval(params1).back();
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, sol));
}
TEST_CASE(conv_dynamic_img_same_upper_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape input_dyn_shape{migraphx::shape::float_type,
{{1, 1, 0}, {3, 3, 0}, {4, 6, 0}, {4, 6, 0}}};
migraphx::shape weights_shape{migraphx::shape::float_type, {1, 3, 3, 3}};
auto input = mm->add_parameter("X", input_dyn_shape);
auto weights = mm->add_parameter("W", weights_shape);
mm->add_instruction(
migraphx::make_op("convolution",
{{"stride", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::same_upper},
{"use_dynamic_same_auto_pad", true}}),
input,
weights);
p.compile(migraphx::ref::target{});
std::vector<float> a = {0.63321185, 0.6466339, 0.8515352, 0.44240063, 0.5018913, 0.5068494,
0.75330657, 0.7383877, 0.15870683, 0.8171611, 0.56118083, 0.87004256,
0.24401724, 0.8815178, 0.4222333, 0.27191755,
0.41633207, 0.2460619, 0.32004243, 0.6962248, 0.12284133, 0.2620491,
0.96931046, 0.6030955, 0.7623861, 0.2395751, 0.61440414, 0.577285,
0.80087787, 0.12776066, 0.26566318, 0.46569306,
0.96701574, 0.3850145, 0.14165345, 0.5887347, 0.7152134, 0.5295342,
0.6303507, 0.4037548, 0.18556239, 0.79416305, 0.29107493, 0.18770285,
0.6870904, 0.30701008, 0.314684, 0.91075855};
std::vector<float> c = {
2.8150102e-01, 3.3198616e-01, 9.5149356e-01, 7.4039467e-02, 9.6555042e-01,
2.8815505e-01, 2.5100240e-01, 5.2186239e-01, 2.3850012e-01,
8.2963020e-01, 3.0763101e-04, 6.7026985e-01, 1.4260857e-01, 9.7517288e-01,
3.6847427e-02, 8.5804445e-01, 7.3440993e-01, 6.7948365e-01,
7.9253986e-02, 7.3943835e-01, 1.7813577e-01, 1.0780835e-01, 4.2304707e-01,
4.0084350e-01, 1.1114500e-01, 4.4846520e-01, 5.0109702e-01};
std::vector<float> sol = {3.013387,
3.7111127,
4.2946506,
3.579301,
4.5306826,
6.1262493,
6.332169,
4.495293,
4.46013,
6.0938954,
5.848162,
4.514299,
2.9587686,
4.117671,
3.5187216,
2.3236327};
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {1, 3, 4, 4}};
migraphx::parameter_map params0;
params0["X"] = migraphx::argument(input_fixed_shape0, a.data());
params0["W"] = migraphx::argument(weights_shape, c.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(16);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, sol));
}
TEST_CASE(conv_dynamic_kernel_same_lower_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape input_shape{migraphx::shape::float_type, {1, 3, 4, 4}};
migraphx::shape weights_shape{migraphx::shape::float_type,
{{1, 1, 0}, {3, 3, 0}, {2, 3, 0}, {2, 3, 0}}};
auto input = mm->add_parameter("X", input_shape);
auto weights = mm->add_parameter("W", weights_shape);
mm->add_instruction(
migraphx::make_op("convolution",
{{"stride", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::same_lower},
{"use_dynamic_same_auto_pad", true}}),
input,
weights);
p.compile(migraphx::ref::target{});
std::vector<float> a = {0.63321185, 0.6466339, 0.8515352, 0.44240063, 0.5018913, 0.5068494,
0.75330657, 0.7383877, 0.15870683, 0.8171611, 0.56118083, 0.87004256,
0.24401724, 0.8815178, 0.4222333, 0.27191755,
0.41633207, 0.2460619, 0.32004243, 0.6962248, 0.12284133, 0.2620491,
0.96931046, 0.6030955, 0.7623861, 0.2395751, 0.61440414, 0.577285,
0.80087787, 0.12776066, 0.26566318, 0.46569306,
0.96701574, 0.3850145, 0.14165345, 0.5887347, 0.7152134, 0.5295342,
0.6303507, 0.4037548, 0.18556239, 0.79416305, 0.29107493, 0.18770285,
0.6870904, 0.30701008, 0.314684, 0.91075855};
std::vector<float> c = {2.8150102e-01,
3.3198616e-01,
9.5149356e-01,
7.4039467e-02,
9.6555042e-01,
2.8815505e-01,
2.5100240e-01,
5.2186239e-01,
2.3850012e-01,
8.2963020e-01,
3.0763101e-04,
6.7026985e-01};
std::vector<float> sol = {2.453681,
2.536207,
3.0187201,
1.7912633,
2.1738236,
2.9695358,
3.2319589,
1.859269,
2.5953722,
2.50734,
2.7736917,
1.2229807,
1.5900216,
0.9225286,
1.43048,
0.74341124};
migraphx::shape weight_fixed_shape0{migraphx::shape::float_type, {1, 3, 2, 2}};
migraphx::parameter_map params0;
params0["X"] = migraphx::argument(input_shape, a.data());
params0["W"] = migraphx::argument(weight_fixed_shape0, c.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector(16);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, sol));
}
TEST_CASE(conv2d_padding_stride_test)
{
migraphx::program p;
......@@ -3030,6 +3460,80 @@ TEST_CASE(min_test)
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(fmod_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::int32_type, {3}};
auto l0 = mm->add_literal(migraphx::literal{s, {-7, 8, -3}});
auto l1 = mm->add_literal(migraphx::literal{s, {2, 4, 6}});
auto l2 = mm->add_literal(migraphx::literal{s, {7, 5, 9}});
auto curr_mod = mm->add_instruction(migraphx::make_op("fmod"), l0, l1);
mm->add_instruction(migraphx::make_op("fmod"), curr_mod, l2);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{-1, 0, -3};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(fmod_float_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3}};
auto l0 = mm->add_literal(migraphx::literal{s, {-7.2f, 8.5f, -3.3f}});
auto l1 = mm->add_literal(migraphx::literal{s, {2.0f, 4.0f, 6.0f}});
auto l2 = mm->add_literal(migraphx::literal{s, {7.0f, 5.0f, 9.0f}});
auto curr_mod = mm->add_instruction(migraphx::make_op("fmod"), l0, l1);
mm->add_instruction(migraphx::make_op("fmod"), curr_mod, l2);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{-1.2f, 0.5f, -3.3f};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(mod_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::int32_type, {3}};
auto l0 = mm->add_literal(migraphx::literal{s, {-3, 8, -7}});
auto l1 = mm->add_literal(migraphx::literal{s, {3, 3, 3}});
auto l2 = mm->add_literal(migraphx::literal{s, {10, 2, 9}});
auto curr_mod = mm->add_instruction(migraphx::make_op("mod"), l0, l1);
mm->add_instruction(migraphx::make_op("mod"), curr_mod, l2);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{0, 0, 2};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(mod_float_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3}};
auto l0 = mm->add_literal(migraphx::literal{s, {-3.0f, 8.5f, -7.0f}});
auto l1 = mm->add_literal(migraphx::literal{s, {2.0f, 3.0f, 3.0f}});
auto l2 = mm->add_literal(migraphx::literal{s, {3.0f, 3.0f, 4.0f}});
auto curr_mod = mm->add_instruction(migraphx::make_op("mod"), l0, l1);
mm->add_instruction(migraphx::make_op("mod"), curr_mod, l2);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(4);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{1.0f, 2.5f, 2.0f};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(mul_test)
{
migraphx::program p;
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/sqlite.hpp>
#include <migraphx/tmp_dir.hpp>
#include <test.hpp>
TEST_CASE(read_write)
{
const std::string create_table = R"__migraphx__(
CREATE TABLE IF NOT EXISTS test_db (
id INTEGER PRIMARY KEY ASC,
data TEXT NOT NULL
);
INSERT INTO test_db (id, data) VALUES (1, "a");
)__migraphx__";
const std::string select_all = R"__migraphx__(
SELECT * FROM test_db;
)__migraphx__";
migraphx::tmp_dir td{};
auto db_path = td.path / "test.db";
{
auto db = migraphx::sqlite::write(db_path);
db.execute(create_table);
}
{
auto db = migraphx::sqlite::read(db_path);
auto rows = db.execute(select_all);
EXPECT(rows.size() == 1);
auto row = rows.front();
EXPECT(row.at("data") == "a");
EXPECT(row.at("id") == "1");
}
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
# AMD MIGraphX Accuracy checker
## Instructions
First ensure requirements and MIGraphX's python library are installed. Refer to MIGraphX instructions at the root directory to install the python library.
Use the command below to install remaining dependencies:
```
pip install -r requirements.txt
```
The accuracy checker will compare outputs from MIGraphX and onnx runtime. Therefore, an onnx file is required argument.
Example usage is below:
```
python accuracy_checker.py --onnx [path to onnx_file]
```
The output of the checker will either report as `PASSED` or `FAILED`. For detailed information,
the `--verbose` flag can be passed in to the command line which shows the mismatched elements between MIGraphX and onnx runtime.
By default, the tolerance is set to `1e-3`, but this can be changed by passing in `--tolerance [tolerance]`.
If the tolerance value is increased, then less accurate results from MIGraphX will be accepted.
For models that support variable batch sizes, use `--batch [batch_size]` to modify the batch size.
Random values are assigned to the model's inputs. However, they can be set to only contain 1s if the `--fill1` flag is passed in.
This is useful for verifying models such as bert which use integer datatypes.
By default, the CPU Execution Provider is used when running onnx runtime. If building onnx runtime with a different version, specify the provider using `--provider`.
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import argparse
import numpy as np
import migraphx
import onnxruntime as ort
def parse_args():
parser = argparse.ArgumentParser(
description=
'MIGraphX accuracy checker. Use to verify onnx files to ensure MIGraphX\'s output \
is within tolerance of onnx runtime\'s expected output.'
)
req_args = parser.add_argument_group(title='required arguments')
req_args.add_argument('--onnx',
type=str,
required=True,
help='path to onnx file')
req_args.add_argument('--provider',
type=str,
default='CPUExecutionProvider',
help='execution provider for onnx runtime \
(default = CPUExecutionProvider)')
parser.add_argument('--batch',
type=int,
default=1,
help='batch size (if specified in onnx file)')
parser.add_argument('--fill1',
action='store_true',
help='fill all arguments with a value of 1')
parser.add_argument('--verbose',
action='store_true',
help='show verbose information (for debugging)')
parser.add_argument('--tolerance',
type=float,
default=1e-3,
help='accuracy tolerance (default = 1e-3)')
args = parser.parse_args()
return args
# taken from ../test_runner.py
def check_correctness(gold_outputs,
outputs,
rtol=1e-3,
atol=1e-3,
verbose=False):
if len(gold_outputs) != len(outputs):
print('Number of outputs {} is not equal to expected number {}'.format(
len(outputs), len(gold_outputs)))
return False
out_num = len(gold_outputs)
ret = True
for i in range(out_num):
if not np.allclose(gold_outputs[i], outputs[i], rtol, atol):
ret = False
if verbose:
print('\nOutput {} is incorrect ...'.format(i))
print('Expected value: \n{}'.format(gold_outputs[i]))
print('......')
print('Actual value: \n{}\n'.format(outputs[i]))
else:
print('Outputs do not match')
break
return ret
def get_np_datatype(in_type):
datatypes = {
'double_type': np.float64,
'float_type': np.float32,
'half_type': np.half,
'int64_type': np.int64,
'uint64_type': np.uint64,
'int32_type': np.int32,
'uint32_type': np.uint32,
'int16_type': np.int16,
'uint16_type': np.uint16,
'int8_type': np.int8,
'uint8_type': np.uint8,
'bool_type': np.bool_
}
return datatypes[in_type]
def main():
args = parse_args()
model_name = args.onnx
batch = args.batch
model = migraphx.parse_onnx(model_name, default_dim_value=batch)
model.compile(migraphx.get_target('gpu'), offload_copy=False)
params = {}
test_inputs = {}
for name, shape in model.get_parameter_shapes().items():
if args.verbose:
print('Parameter {} -> {}'.format(name, shape))
in_shape = shape.lens()
in_type = shape.type_string()
if not args.fill1:
test_input = np.random.rand(*(in_shape)).astype(
get_np_datatype(in_type))
else:
test_input = np.ones(in_shape).astype(get_np_datatype(in_type))
test_inputs[name] = test_input
params[name] = migraphx.to_gpu(migraphx.argument(test_input))
pred_migx = np.array(migraphx.from_gpu(model.run(params)[-1]))
sess = ort.InferenceSession(model_name, providers=[args.provider])
ort_params = {}
for input in sess.get_inputs():
ort_params[input.name] = test_inputs[input.name]
pred_ort = sess.run(None, ort_params)[-1]
is_correct = check_correctness(pred_ort, pred_migx, args.tolerance,
args.tolerance, args.verbose)
verbose_string = ' Rerun with --verbose for detailed information.' \
if not args.verbose else ''
if is_correct:
print('PASSED: MIGraphX meets tolerance')
else:
print('FAILED: MIGraphX is not within tolerance.' + verbose_string)
if __name__ == '__main__':
main()
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
numpy==1.18.5
onnxruntime==1.10.0
......@@ -68,8 +68,10 @@ struct operation
*
* @param ctx This is the context created by the `target` during compilation. Implementations
* can use the target's `context` class rather than the `context` interface class.
* @param output This is the output shape. It is equivalent to running `compute_shape` with each
* `shape` of the `argument`.
* @param output Equivalent to running `compute_shape` with each `shape` of the `argument`.
* For a fixed shape, the returned argument will have the same shape as `output`.
* For a dynamic shape, the returned `argument` will be a fixed shape within the bounds
* set in the dynamic shape `output`.
* @param input This is the `argument` result from the previous instruction's computation.
* @return Return an `argument` of the result computation. The `shape` of `argument` should be
* the same the `output` shape.
......@@ -137,7 +139,7 @@ auto compute_shape_op(rank<2>, const T& x, const std::vector<shape>& inputs)
-> decltype(x.normalize_compute_shape(inputs))
{
dependent_type<operation, T> y = x;
normalize_attributes(y, inputs[0].lens());
normalize_attributes(y, inputs[0].max_lens());
return any_cast<T>(y).normalize_compute_shape(inputs);
}
......
......@@ -22,11 +22,14 @@
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import subprocess
import subprocess, os
#Debug flag
debug = False
__repo_dir__ = os.path.normpath(
os.path.join(os.path.realpath(__file__), '..', '..'))
# Markdown code blob we should use to insert into notebook files
def getipynb_markdownBlockAsList():
......@@ -222,14 +225,15 @@ def getDelimiter(filename):
def main():
message = open('LICENSE').read()
message = open(os.path.join(__repo_dir__, 'LICENSE')).read()
#Get a list of all the files in our git repo
#bashCommand = "git ls-files --exclude-standard"
#print (bashCommand.split())
proc = subprocess.run("git ls-files --exclude-standard",
shell=True,
stdout=subprocess.PIPE)
stdout=subprocess.PIPE,
cwd=__repo_dir__)
fileList = proc.stdout.decode().split('\n')
message = message.split('\n')
......@@ -237,7 +241,8 @@ def main():
print("Target file list:\n" + str(fileList))
print("Output Message:\n" + str(message))
for file in fileList:
for rfile in fileList:
file = os.path.join(__repo_dir__, rfile)
#print(file)
commentDelim = getDelimiter(file)
if commentDelim is not None:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment