"...experiment/overview/count/EditExperimentParam.tsx" did not exist on "6aae16c5edf6b8690cbfac7b278c3966c61b673e"
Commit 32b83c9c authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into inner_bcast_fix

parents 92f5a6cd 434a06cf
......@@ -24,7 +24,6 @@
#include <migraphx/layout_nhwc.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
......
......@@ -89,17 +89,13 @@ bool is_overlap_load(migraphx::instruction_ref a, migraphx::instruction_ref b)
bool is_disjoint(const std::vector<migraphx::instruction_ref>& inss)
{
for(auto ins1 : inss)
{
for(auto ins2 : inss)
{
return std::none_of(inss.begin(), inss.end(), [&](auto ins1) {
return std::none_of(inss.begin(), inss.end(), [&](auto ins2) {
if(ins1 == ins2)
continue;
if(is_overlap_load(ins1, ins2))
return false;
}
}
return true;
return true;
return is_overlap_load(ins1, ins2);
});
});
}
TEST_CASE(test1)
......
......@@ -25,13 +25,37 @@
#include <migraphx/value.hpp>
#include <msgpack.hpp>
#include <map>
#include <numeric>
#include "test.hpp"
template <class T, MIGRAPHX_REQUIRES(not std::is_base_of<std::vector<std::uint8_t>, T>{})>
void write_msgpack(std::ostream& os, const T& src)
{
msgpack::pack(os, src);
}
void write_msgpack(std::ostream& os, const std::vector<std::uint8_t>& src)
{
const auto limit = std::numeric_limits<uint32_t>::max() - 1;
std::vector<std::vector<std::uint8_t>> chunks;
if(src.size() > limit)
{
// Only test two chunks
assert(std::distance(src.begin() + limit, src.end()) < limit);
chunks.emplace_back(src.begin(), src.begin() + limit);
chunks.emplace_back(src.begin() + limit, src.end());
}
else
{
chunks = {src};
}
write_msgpack(os, chunks);
}
template <class T>
std::vector<char> msgpack_buffer(const T& src)
{
std::stringstream buffer;
msgpack::pack(buffer, src);
write_msgpack(buffer, src);
buffer.seekg(0);
std::string str = buffer.str();
return std::vector<char>(str.data(), str.data() + str.size()); // NOLINT
......@@ -147,4 +171,51 @@ TEST_CASE(test_msgpack_array_class)
EXPECT(migraphx::from_msgpack(buffer) == v);
}
TEST_CASE(test_msgpack_binary)
{
migraphx::value::binary bin{64};
std::iota(bin.begin(), bin.end(), 1);
auto buffer = migraphx::to_msgpack(bin);
EXPECT(buffer == msgpack_buffer(bin));
EXPECT(migraphx::from_msgpack(buffer) == bin);
}
#ifndef MIGRAPHX_DISABLE_LARGE_BUFFER_TESTS
TEST_CASE(test_msgpack_large_binary1)
{
const std::size_t n = 4LL * 1024 * 1024 * 1024 + 2;
const char fill_value = 2;
migraphx::value v;
{
std::vector<char> buffer;
{
migraphx::value::binary bin{n};
std::fill(bin.begin(), bin.begin() + n / 2, fill_value);
std::fill(bin.begin() + n / 2, bin.end(), fill_value + 1);
buffer = migraphx::to_msgpack(std::move(bin));
}
v = migraphx::from_msgpack(buffer);
}
EXPECT(v.is_binary());
EXPECT(v.get_binary().size() == n);
EXPECT(std::all_of(v.get_binary().begin(), v.get_binary().begin() + n / 2, [](auto c) {
return c == fill_value;
}));
EXPECT(std::all_of(v.get_binary().begin() + n / 2, v.get_binary().end(), [](auto c) {
return c == fill_value + 1;
}));
}
TEST_CASE(test_msgpack_binary2)
{
const std::size_t n = 4LL * 1024 * 1024 * 1024 + 2;
migraphx::value::binary bin{n};
std::size_t i = 0;
std::generate(bin.begin(), bin.end(), [&] {
i++;
return i % 256;
});
EXPECT(migraphx::to_msgpack(bin) == msgpack_buffer(bin));
}
#endif
int main(int argc, const char* argv[]) { test::run(argc, argv); }
21a71d52bd2074b770807b209939ec11e2c64fa7
6d7bc2a097a1a08541cd0d4628831c79ab8092d5
constant_no_attributes_test:)
"Constantconstant_no_attributes_testB
\ No newline at end of file
constant_value_int_test:7
"Constant*
value_int@ constant_value_int_testB
\ No newline at end of file
constant_value_ints_test:=
!"Constant*
value_ints@@@ constant_value_ints_testB
\ No newline at end of file
......@@ -270,23 +270,26 @@ def averagepool_dyn_test():
node = onnx.helper.make_node('AveragePool',
inputs=['0'],
outputs=['1'],
kernel_shape=[3, 3, 3])
kernel_shape=[3, 3, 3],
strides=[2, 2, 2],
pads=[1, 1, 1, 1, 1, 1])
return ([node], [x], [out])
@onnx_test()
def averagepool_dyn_autopad_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [None, 1, 5, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [None, 1, 5, 5])
def averagepool_dyn_autopad_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[None, 3, 5, 5, 5])
out = helper.make_tensor_value_info('1', TensorProto.FLOAT,
[None, 3, 3, 3, 3])
node = onnx.helper.make_node('AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad='SAME_LOWER')
return ([node], [x], [y])
inputs=['0'],
outputs=['1'],
kernel_shape=[3, 3, 3],
strides=[2, 2, 2],
auto_pad='SAME_UPPER')
return ([node], [x], [out])
@onnx_test()
......@@ -822,6 +825,76 @@ def constant_test():
return ([node], [], [y])
@onnx_test()
def constant_value_float_test():
node = onnx.helper.make_node('Constant',
inputs=[],
outputs=[],
value_float=[1.0])
return ([node], [], [])
@onnx_test()
def constant_value_floats_test():
node = onnx.helper.make_node('Constant',
inputs=[],
outputs=[],
value_floats=[1.0, 2.0, 3.0])
return ([node], [], [])
@onnx_test()
def constant_value_int_test():
node = onnx.helper.make_node('Constant',
inputs=[],
outputs=[],
value_int=[1])
return ([node], [], [])
@onnx_test()
def constant_value_ints_test():
node = onnx.helper.make_node('Constant',
inputs=[],
outputs=[],
value_ints=[1, 2, 3])
return ([node], [], [])
@onnx_test()
def constant_no_attributes_test():
node = onnx.helper.make_node('Constant', inputs=[], outputs=[])
return ([node], [], [])
@onnx_test()
def constant_multiple_attributes_test():
x = np.array([0, 1, 2])
node = onnx.helper.make_node('Constant',
inputs=[],
outputs=[],
value_floats=[1.0, 2.0],
value_ints=[1, 2],
value=onnx.helper.make_tensor(
name='const_tensor',
data_type=TensorProto.FLOAT,
dims=x.shape,
vals=x.flatten().astype(float)))
return ([node], [], [])
@onnx_test()
def constant_fill_test():
value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])
......@@ -3456,7 +3529,6 @@ def instance_norm_dyn_batch_test():
outputs=['3'])
return ([node], [x, scale, bias], [y])
return ([node], [x, scale, bias], [y])
@onnx_test()
......@@ -6414,6 +6486,30 @@ def slice_test():
return ([node], [x], [y])
@onnx_test()
def slice_constant_test():
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2])
x_tensor = helper.make_tensor(name='x_tensor',
data_type=TensorProto.FLOAT,
dims=[3, 2],
vals=[0, 1, 2, 3, 4, 5])
x = onnx.helper.make_node('Constant',
inputs=[],
outputs=['x'],
value=x_tensor)
node = onnx.helper.make_node('Slice',
inputs=['x'],
axes=[0, 1],
starts=[1, 0],
ends=[2, 2],
outputs=['1'])
return ([x, node], [], [y])
@onnx_test()
def slice_dyn_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [None, None, 2])
......@@ -6746,6 +6842,92 @@ def slice_max_end_test():
return ([node], [x], [y])
@onnx_test()
def slice_var_input_static0():
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node('Slice',
inputs=['data', 'starts', 'ends'],
axes=[0, 1],
outputs=['output'])
return ([node], [data, starts, ends], [output])
@onnx_test()
def slice_var_input_static1():
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
starts = helper.make_tensor_value_info('starts', TensorProto.INT64, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.INT64, [2])
axes = helper.make_tensor_value_info('axes', TensorProto.INT64, [2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node('Slice',
inputs=['data', 'starts', 'ends', 'axes'],
outputs=['output'])
return ([node], [data, starts, ends, axes], [output])
@onnx_test()
def slice_var_input_dyn0():
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node('Slice',
inputs=['data', 'starts', 'ends'],
axes=[0, 1],
outputs=['output'])
return ([node], [data, starts, ends], [output])
@onnx_test()
def slice_var_input_dyn1():
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [None, 2])
starts = helper.make_tensor_value_info('starts', TensorProto.INT32, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.INT32, [2])
axes = helper.make_tensor_value_info('axes', TensorProto.INT32, [2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node('Slice',
inputs=['data', 'starts', 'ends', 'axes'],
outputs=['output'])
return ([node], [data, starts, ends, axes], [output])
@onnx_test()
def slice_var_input_steps_error():
step = np.array([2, 1])
step_tensor = helper.make_tensor(name="step",
data_type=TensorProto.INT32,
dims=step.shape,
vals=step.astype(int))
arg_step = helper.make_node("Constant",
inputs=[],
outputs=['arg_step'],
value=step_tensor)
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 2])
starts = helper.make_tensor_value_info('starts', TensorProto.FLOAT, [2])
ends = helper.make_tensor_value_info('ends', TensorProto.FLOAT, [2])
axes = helper.make_tensor_value_info('axes', TensorProto.FLOAT, [2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node(
'Slice',
inputs=['data', 'starts', 'ends', 'axes', 'arg_step'],
outputs=['output'])
return ([arg_step, node], [data, starts, ends, axes], [output])
@onnx_test()
def softmax_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3])
......
......@@ -24,7 +24,7 @@
#include <iostream>
#include <vector>
#include <migraphx/literal.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pass_manager.hpp>
......
......@@ -292,16 +292,21 @@ TEST_CASE(averagepool_3d_test)
TEST_CASE(averagepool_dyn_test)
{
// Pooling with dynamic input and no auto padding
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", {migraphx::shape::float_type, {{1, 4}, {3, 3}, {5, 5}, {5, 5}, {5, 5}}});
auto ret = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0, 0, 0}},
{"stride", {1, 1, 1}},
{"lengths", {3, 3, 3}}}),
l0);
auto ret =
mm->add_instruction(migraphx::make_op("pooling",
{
{"mode", migraphx::op::pooling_mode::average},
{"stride", {2, 2, 2}},
{"lengths", {3, 3, 3}},
{"padding", {1, 1, 1, 1, 1, 1}},
{"padding_mode", 0},
}),
l0);
mm->add_return({ret});
migraphx::onnx_options options;
......@@ -310,12 +315,29 @@ TEST_CASE(averagepool_dyn_test)
EXPECT(p == prog);
}
TEST_CASE(averagepool_dyn_autopad_error_test)
TEST_CASE(averagepool_dyn_autopad_test)
{
// Pooling with dynamic input and auto padding. Default padding values will be overridden.
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter(
"0", {migraphx::shape::float_type, {{1, 4}, {3, 3}, {5, 5}, {5, 5}, {5, 5}}});
auto ret = mm->add_instruction(
migraphx::make_op("pooling",
{
{"mode", migraphx::op::pooling_mode::average},
{"stride", {2, 2, 2}},
{"lengths", {3, 3, 3}},
{"padding", {0, 0, 0, 0, 0, 0}},
{"padding_mode", migraphx::op::padding_mode_t::same_upper},
}),
l0);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, 4};
EXPECT(test::throws(
[&] { migraphx::parse_onnx("averagepool_dyn_autopad_error_test.onnx", options); }));
auto prog = migraphx::parse_onnx("averagepool_dyn_autopad_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(averagepool_dyn_asym_padding_error_test)
......@@ -374,16 +396,22 @@ TEST_CASE(averagepool_nt_cip_test)
TEST_CASE(averagepool_same_lower_test)
{
// auto_pad mode of SAME_LOWER with a static input shape is handled in parsing and
// padding_mode is set to default_ when the operation is created
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
auto ins = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1, 1, 1}},
{"stride", {1, 1}},
{"lengths", {2, 2}}}),
input);
auto ret = mm->add_instruction(
auto ins = mm->add_instruction(
migraphx::make_op("pooling",
{
{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1, 1, 1}},
{"stride", {1, 1}},
{"lengths", {2, 2}},
{"padding_mode", migraphx::op::padding_mode_t::default_},
}),
input);
auto ret = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {0, 0}}, {"ends", {5, 5}}}), ins);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("averagepool_same_lower_test.onnx");
......@@ -902,6 +930,58 @@ TEST_CASE(constant_test)
EXPECT(p == prog);
}
TEST_CASE(constant_value_float_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
mm->add_literal(migraphx::literal{migraphx::shape{migraphx::shape::float_type, {1}}, {1.0f}});
auto prog = optimize_onnx("constant_value_float_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(constant_value_floats_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::float_type, {3}}, {1.0f, 2.0f, 3.0f}});
auto prog = optimize_onnx("constant_value_floats_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(constant_value_int_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
mm->add_literal(migraphx::literal{migraphx::shape{migraphx::shape::int64_type, {1}}, {1}});
auto prog = optimize_onnx("constant_value_int_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(constant_value_ints_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::int64_type, {3}}, {1, 2, 3}});
auto prog = optimize_onnx("constant_value_ints_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(constant_no_attributes_test)
{
EXPECT(test::throws([&] { optimize_onnx("constant_no_attributes_test.onnx"); }));
}
TEST_CASE(constant_multiple_attributes_test)
{
EXPECT(test::throws([&] { optimize_onnx("constant_multiple_attributes_test.onnx"); }));
}
TEST_CASE(constant_fill_test)
{
migraphx::program p;
......@@ -4712,14 +4792,16 @@ TEST_CASE(quantizelinear_test)
auto l1 = mm->add_parameter("1", {migraphx::shape::float_type, {1}});
auto l1_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto s = round->get_shape();
std::vector<int> min_data(s.elements(), 0);
std::vector<int> max_data(s.elements(), 255);
auto min_arg = mm->add_literal(s, min_data);
auto max_arg = mm->add_literal(s, max_data);
auto clip = mm->add_instruction(migraphx::make_op("clip"), round, min_arg, max_arg);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto s = round->get_shape();
auto min_arg = mm->add_literal(migraphx::literal{migraphx::shape{s.type()}, {0}});
auto max_arg = mm->add_literal(migraphx::literal{migraphx::shape{s.type()}, {255}});
auto min_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), min_arg);
auto max_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), max_arg);
auto clip = mm->add_instruction(migraphx::make_op("clip"), round, min_mbcast, max_mbcast);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::uint8_type)}}),
......@@ -4741,14 +4823,16 @@ TEST_CASE(quantizelinear_int32_test)
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::float_type)}}),
l0);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto s = round->get_shape();
std::vector<int> min_data(s.elements(), 0);
std::vector<int> max_data(s.elements(), 255);
auto min_arg = mm->add_literal(s, min_data);
auto max_arg = mm->add_literal(s, max_data);
auto clip = mm->add_instruction(migraphx::make_op("clip"), round, min_arg, max_arg);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto s = round->get_shape();
auto min_arg = mm->add_literal(migraphx::literal{migraphx::shape{s.type()}, {0}});
auto max_arg = mm->add_literal(migraphx::literal{migraphx::shape{s.type()}, {255}});
auto min_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), min_arg);
auto max_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), max_arg);
auto clip = mm->add_instruction(migraphx::make_op("clip"), round, min_mbcast, max_mbcast);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::uint8_type)}}),
......@@ -4775,13 +4859,15 @@ TEST_CASE(quantizelinear_zero_point_test)
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::float_type)}}),
l2_mbcast);
auto add = mm->add_instruction(migraphx::make_op("add"), round, l2_mbcast);
auto s = round->get_shape();
std::vector<int> min_data(s.elements(), -128);
std::vector<int> max_data(s.elements(), 127);
auto min_arg = mm->add_literal(s, min_data);
auto max_arg = mm->add_literal(s, max_data);
auto clip = mm->add_instruction(migraphx::make_op("clip"), add, min_arg, max_arg);
auto add = mm->add_instruction(migraphx::make_op("add"), round, l2_mbcast);
auto s = round->get_shape();
auto min_arg = mm->add_literal(migraphx::literal{migraphx::shape{s.type()}, {-128}});
auto max_arg = mm->add_literal(migraphx::literal{migraphx::shape{s.type()}, {127}});
auto min_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), min_arg);
auto max_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), max_arg);
auto clip = mm->add_instruction(migraphx::make_op("clip"), add, min_mbcast, max_mbcast);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::int8_type)}}),
......@@ -4812,13 +4898,15 @@ migraphx::program make_quantizelinear_axis_prog()
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::float_type)}}),
l2_bcast);
auto add = mm->add_instruction(migraphx::make_op("add"), round, l2_bcast);
auto s = round->get_shape();
std::vector<int> min_data(s.elements(), -128);
std::vector<int> max_data(s.elements(), 127);
auto min_arg = mm->add_literal(s, min_data);
auto max_arg = mm->add_literal(s, max_data);
auto clip = mm->add_instruction(migraphx::make_op("clip"), add, min_arg, max_arg);
auto add = mm->add_instruction(migraphx::make_op("add"), round, l2_bcast);
auto s = round->get_shape();
auto min_arg = mm->add_literal(migraphx::literal{migraphx::shape{s.type()}, {-128}});
auto max_arg = mm->add_literal(migraphx::literal{migraphx::shape{s.type()}, {127}});
auto min_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), min_arg);
auto max_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), max_arg);
auto clip = mm->add_instruction(migraphx::make_op("clip"), add, min_mbcast, max_mbcast);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::int8_type)}}),
......@@ -5863,7 +5951,13 @@ TEST_CASE(roialign_default_test)
auto rois = mm->add_parameter("rois", srois);
auto bi = mm->add_parameter("batch_ind", sbi);
auto r = mm->add_instruction(migraphx::make_op("roialign"), x, rois, bi);
// Due to the onnx model using opset 12, the coordinate_transformation_mode should be set to
// output_half_pixel
auto r = mm->add_instruction(
migraphx::make_op("roialign", {{"coordinate_transformation_mode", "output_half_pixel"}}),
x,
rois,
bi);
mm->add_return({r});
auto prog = migraphx::parse_onnx("roialign_default_test.onnx");
......@@ -6286,6 +6380,19 @@ TEST_CASE(slice_test)
EXPECT(p == prog);
}
TEST_CASE(slice_constant_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_literal(migraphx::literal{
migraphx::shape{migraphx::shape::float_type, {3, 2}}, {0, 1, 2, 3, 4, 5}});
mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0, 1}}, {"starts", {1, 0}}, {"ends", {2, 2}}}), l0);
auto prog = optimize_onnx("slice_constant_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(slice_dyn_test)
{
migraphx::program p;
......@@ -6418,6 +6525,74 @@ TEST_CASE(slice_max_end_test)
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_static0)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto data = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {3, 2}});
auto starts = mm->add_parameter("starts", migraphx::shape{migraphx::shape::int32_type, {2}});
auto ends = mm->add_parameter("ends", migraphx::shape{migraphx::shape::int32_type, {2}});
mm->add_instruction(migraphx::make_op("slice", {{"axes", {0, 1}}}), data, starts, ends);
auto prog = optimize_onnx("slice_var_input_static0.onnx");
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_static1)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto data = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {3, 2}});
auto starts = mm->add_parameter("starts", migraphx::shape{migraphx::shape::int64_type, {2}});
auto ends = mm->add_parameter("ends", migraphx::shape{migraphx::shape::int64_type, {2}});
auto axes = mm->add_parameter("axes", migraphx::shape{migraphx::shape::int64_type, {2}});
mm->add_instruction(migraphx::make_op("slice"), data, starts, ends, axes);
auto prog = optimize_onnx("slice_var_input_static1.onnx");
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_dyn0)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto data =
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {{3, 8}, {2, 2}}});
auto starts = mm->add_parameter("starts", migraphx::shape{migraphx::shape::int32_type, {2}});
auto ends = mm->add_parameter("ends", migraphx::shape{migraphx::shape::int32_type, {2}});
auto ret =
mm->add_instruction(migraphx::make_op("slice", {{"axes", {0, 1}}}), data, starts, ends);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {3, 8};
auto prog = parse_onnx("slice_var_input_dyn0.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_dyn1)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto data =
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {{3, 8}, {2, 2}}});
auto starts = mm->add_parameter("starts", migraphx::shape{migraphx::shape::int32_type, {2}});
auto ends = mm->add_parameter("ends", migraphx::shape{migraphx::shape::int32_type, {2}});
auto axes = mm->add_parameter("axes", migraphx::shape{migraphx::shape::int32_type, {2}});
auto ret = mm->add_instruction(migraphx::make_op("slice"), data, starts, ends, axes);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {3, 8};
auto prog = parse_onnx("slice_var_input_dyn1.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_steps_error)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("slice_var_input_steps_error.onnx"); }));
}
TEST_CASE(softmax_test)
{
migraphx::program p;
......
 slice_var_input_static1:
)
data
starts
ends
axesoutput"Sliceslice_var_input_static1Z
data


Z
starts

Z
ends

Z
axes

b
output


B
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment