Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
2fc6b715
Commit
2fc6b715
authored
Apr 14, 2023
by
Paul
Browse files
Merge
parents
5967d68d
118e05c7
Changes
177
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
304 additions
and
105 deletions
+304
-105
src/include/migraphx/op/allocate.hpp
src/include/migraphx/op/allocate.hpp
+1
-1
src/include/migraphx/op/argmax.hpp
src/include/migraphx/op/argmax.hpp
+1
-1
src/include/migraphx/op/concat.hpp
src/include/migraphx/op/concat.hpp
+1
-1
src/include/migraphx/op/contiguous.hpp
src/include/migraphx/op/contiguous.hpp
+1
-1
src/include/migraphx/op/convolution.hpp
src/include/migraphx/op/convolution.hpp
+50
-7
src/include/migraphx/op/dequantizelinear.hpp
src/include/migraphx/op/dequantizelinear.hpp
+5
-1
src/include/migraphx/op/flatten.hpp
src/include/migraphx/op/flatten.hpp
+4
-8
src/include/migraphx/op/gathernd.hpp
src/include/migraphx/op/gathernd.hpp
+1
-1
src/include/migraphx/op/nonmaxsuppression.hpp
src/include/migraphx/op/nonmaxsuppression.hpp
+2
-2
src/include/migraphx/op/pooling.hpp
src/include/migraphx/op/pooling.hpp
+15
-23
src/include/migraphx/op/quant_convolution.hpp
src/include/migraphx/op/quant_convolution.hpp
+13
-0
src/include/migraphx/op/quantizelinear.hpp
src/include/migraphx/op/quantizelinear.hpp
+14
-12
src/include/migraphx/op/reduce_op.hpp
src/include/migraphx/op/reduce_op.hpp
+2
-4
src/include/migraphx/op/reshape.hpp
src/include/migraphx/op/reshape.hpp
+99
-2
src/include/migraphx/op/select_module.hpp
src/include/migraphx/op/select_module.hpp
+70
-20
src/include/migraphx/op/slice.hpp
src/include/migraphx/op/slice.hpp
+3
-10
src/include/migraphx/op/unsqueeze.hpp
src/include/migraphx/op/unsqueeze.hpp
+1
-1
src/include/migraphx/pass_manager.hpp
src/include/migraphx/pass_manager.hpp
+1
-0
src/include/migraphx/process.hpp
src/include/migraphx/process.hpp
+3
-0
src/include/migraphx/promote_literals.hpp
src/include/migraphx/promote_literals.hpp
+17
-10
No files found.
src/include/migraphx/op/allocate.hpp
View file @
2fc6b715
...
...
@@ -44,7 +44,7 @@ struct allocate
std
::
string
name
()
const
{
return
"allocate"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
migraphx
::
check_shapes
{
inputs
,
*
this
}.
has
(
0
);
migraphx
::
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
0
);
return
s
;
}
argument
compute
(
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
)
const
...
...
src/include/migraphx/op/argmax.hpp
View file @
2fc6b715
...
...
@@ -62,7 +62,7 @@ struct argmax
if
(
s0
.
dynamic
())
{
auto
dyn_dims
=
s0
.
dyn_dims
();
dyn_dims
[
axis
]
=
{
1
,
1
,
0
};
dyn_dims
[
axis
]
=
{
1
,
1
};
return
{
shape
::
int64_type
,
dyn_dims
};
}
else
...
...
src/include/migraphx/op/concat.hpp
View file @
2fc6b715
...
...
@@ -134,7 +134,7 @@ struct concat
}
auto
new_dims
=
inputs
[
0
].
dyn_dims
();
new_dims
[
axis
]
=
migraphx
::
shape
::
dynamic_dimension
{
new_min
,
new_max
,
0
};
new_dims
[
axis
]
=
migraphx
::
shape
::
dynamic_dimension
{
new_min
,
new_max
};
return
{
inputs
[
0
].
type
(),
new_dims
};
}
else
...
...
src/include/migraphx/op/contiguous.hpp
View file @
2fc6b715
...
...
@@ -48,7 +48,7 @@ struct contiguous
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
s0
=
inputs
.
front
();
if
(
s0
.
dynamic
()
or
s0
.
standard
()
)
if
(
s0
.
dynamic
())
{
return
s0
;
}
...
...
src/include/migraphx/op/convolution.hpp
View file @
2fc6b715
...
...
@@ -24,9 +24,12 @@
#ifndef MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_HPP
#define MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_HPP
#include <migraphx/argument.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
#include <migraphx/convolution.hpp>
#include <migraphx/pad_calc.hpp>
#include <migraphx/value.hpp>
#include <cmath>
#include <utility>
...
...
@@ -35,6 +38,10 @@ namespace migraphx {
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
/**
* Convolution operator. Does not support optimal dimensions for spatial dimensions. Returns empty
* optimals.
*/
struct
convolution
{
std
::
vector
<
std
::
size_t
>
padding
=
{
0
,
0
};
...
...
@@ -145,7 +152,7 @@ struct convolution
else
{
auto
l
=
input_shape
.
lens
().
at
(
0
);
output_dyn_dims
.
push_back
({
l
,
l
,
0
});
output_dyn_dims
.
push_back
({
l
,
l
});
}
};
...
...
@@ -162,25 +169,30 @@ struct convolution
if
(
x_shape
.
dynamic
())
{
auto
x
=
x_shape
.
dyn_dims
()[
i
+
2
];
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
ceil_div
(
x
.
min
,
s
),
ceil_div
(
x
.
max
,
s
),
ceil_div
(
x
.
opt
,
s
)});
std
::
set
<
std
::
size_t
>
optimals
{};
std
::
transform
(
x
.
optimals
.
begin
(),
x
.
optimals
.
end
(),
std
::
inserter
(
optimals
,
optimals
.
begin
()),
[
&
](
auto
o
)
{
return
ceil_div
(
o
,
s
);
});
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
ceil_div
(
x
.
min
,
s
),
ceil_div
(
x
.
max
,
s
),
optimals
});
}
else
{
auto
od
=
ceil_div
(
x_shape
.
lens
()[
i
+
2
],
s
);
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
od
,
od
,
0
});
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
od
,
od
});
}
}
}
else
{
// Does not compute for optimals
auto
min_spatial_dims
=
calc_conv_lens
(
x_shape
.
min_lens
(),
w_shape
.
max_lens
());
auto
max_spatial_dims
=
calc_conv_lens
(
x_shape
.
max_lens
(),
w_shape
.
min_lens
());
auto
opt_spatial_dims
=
calc_conv_lens
(
x_shape
.
opt_lens
(),
w_shape
.
opt_lens
());
for
(
size_t
i
=
0
;
i
<
num_spatial_dims
;
++
i
)
{
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
min_spatial_dims
[
i
],
max_spatial_dims
[
i
],
opt_spatial_dims
[
i
]
});
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
min_spatial_dims
[
i
],
max_spatial_dims
[
i
],
{}
});
}
}
return
shape
{
x_shape
.
type
(),
output_dyn_dims
};
...
...
@@ -201,6 +213,37 @@ struct convolution
check_attribute_size
();
return
stride
.
size
();
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
std
::
vector
<
std
::
size_t
>
new_padding
;
if
(
padding_mode
!=
op
::
padding_mode_t
::
default_
)
{
auto
input_lens
=
args
[
0
].
get_shape
().
lens
();
auto
weights_lens
=
args
[
1
].
get_shape
().
lens
();
new_padding
=
padding_mode
==
op
::
same_upper
?
calc_dyn_auto_pad
(
input_lens
,
weights_lens
,
stride
,
dilation
,
true
)
:
calc_dyn_auto_pad
(
input_lens
,
weights_lens
,
stride
,
dilation
,
false
);
output_shape
=
compute_padded_shape
(
args
[
0
].
get_shape
(),
args
[
1
].
get_shape
(),
new_padding
,
stride
,
dilation
);
}
else
{
new_padding
=
padding
;
if
(
output_shape
.
dynamic
())
{
output_shape
=
normalize_compute_shape
({
args
.
at
(
0
).
get_shape
(),
args
.
at
(
1
).
get_shape
()});
}
}
argument
result
{
output_shape
};
visit_all
(
result
,
args
[
0
],
args
[
1
])([
&
](
auto
output
,
auto
input
,
auto
weights
)
{
migraphx
::
convolution
(
output
,
input
,
weights
,
new_padding
,
stride
,
group
);
});
return
result
;
}
};
}
// namespace op
...
...
src/include/migraphx/op/dequantizelinear.hpp
View file @
2fc6b715
...
...
@@ -40,7 +40,11 @@ struct dequantizelinear
std
::
string
name
()
const
{
return
"dequantizelinear"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
same_dims
();
check_shapes
{
inputs
,
*
this
}.
same_dims
().
has
(
2
,
3
);
if
(
inputs
.
size
()
==
3
and
inputs
[
0
].
type
()
!=
inputs
[
2
].
type
())
{
MIGRAPHX_THROW
(
"DEQUANTIZELINEAR: Zero point and input should be the same type."
);
}
return
{
inputs
[
1
].
type
(),
inputs
[
0
].
lens
(),
inputs
[
0
].
strides
()};
}
...
...
src/include/migraphx/op/flatten.hpp
View file @
2fc6b715
...
...
@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -59,27 +60,22 @@ struct flatten
auto
s
=
inputs
[
0
];
if
(
s
.
dynamic
())
{
// Doesn't handle optimals
auto
min_lens
=
s
.
min_lens
();
auto
max_lens
=
s
.
max_lens
();
auto
opt_lens
=
s
.
opt_lens
();
// If any of the opt values is 0, output opt will be 0
shape
::
dynamic_dimension
x
=
{
std
::
accumulate
(
min_lens
.
begin
(),
min_lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{}),
std
::
accumulate
(
max_lens
.
begin
(),
max_lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{}),
std
::
accumulate
(
opt_lens
.
begin
(),
opt_lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{})};
{}};
shape
::
dynamic_dimension
y
=
{
std
::
accumulate
(
min_lens
.
begin
()
+
axis
,
min_lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<>
{}),
std
::
accumulate
(
max_lens
.
begin
()
+
axis
,
max_lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<>
{}),
std
::
accumulate
(
opt_lens
.
begin
()
+
axis
,
opt_lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<>
{}),
};
{}};
return
{
s
.
type
(),
{
x
,
y
}};
}
else
...
...
src/include/migraphx/op/gathernd.hpp
View file @
2fc6b715
...
...
@@ -121,7 +121,7 @@ struct gathernd
// A rank 0 output is a scalar
if
(
output_ndim
==
0
)
return
shape
(
data_shape
.
type
(),
{
shape
::
dynamic_dimension
({
1
,
1
,
0
})});
return
shape
(
data_shape
.
type
(),
{
shape
::
dynamic_dimension
({
1
,
1
})});
// Part of the output shape comes from indices tensor, part from data tensor
std
::
vector
<
shape
::
dynamic_dimension
>
output_dims
(
output_ndim
);
...
...
src/include/migraphx/op/nonmaxsuppression.hpp
View file @
2fc6b715
...
...
@@ -119,8 +119,8 @@ struct nonmaxsuppression
fixed_shape_error_check
();
}
std
::
vector
<
shape
::
dynamic_dimension
>
out_lens
=
{};
out_lens
.
push_back
({
0
,
max_num_boxes
,
0
});
out_lens
.
push_back
({
3
,
3
,
0
});
out_lens
.
push_back
({
0
,
max_num_boxes
});
out_lens
.
push_back
({
3
,
3
});
return
{
shape
::
int64_type
,
out_lens
};
}
else
...
...
src/include/migraphx/op/pooling.hpp
View file @
2fc6b715
...
...
@@ -89,25 +89,17 @@ struct pooling
std
::
vector
<
std
::
size_t
>
output_lens
{};
for
(
size_t
i
=
0
;
i
<
kdims
;
++
i
)
{
if
(
input_lens
[
i
+
2
]
==
0
)
{
// handle opt = 0
output_lens
.
push_back
(
0
);
}
else
{
std
::
size_t
padding_factor
=
2
*
padding
[
i
];
if
(
padding
.
size
()
==
2
*
kdims
)
padding_factor
=
padding
[
i
]
+
padding
[
i
+
kdims
];
assert
(
input_lens
[
i
+
2
]
+
padding_factor
>=
lengths
[
i
]);
std
::
size_t
dim_size
=
input_lens
[
i
+
2
]
+
padding_factor
-
lengths
[
i
];
std
::
size_t
len
=
(
ceil_mode
)
?
dim_size
/
stride
[
i
]
+
static_cast
<
std
::
size_t
>
((
dim_size
%
stride
[
i
]
!=
0
))
// ceil uint divide
:
dim_size
/
stride
[
i
];
// floor divide
output_lens
.
push_back
(
len
+
1
);
}
std
::
size_t
padding_factor
=
2
*
padding
[
i
];
if
(
padding
.
size
()
==
2
*
kdims
)
padding_factor
=
padding
[
i
]
+
padding
[
i
+
kdims
];
assert
(
input_lens
[
i
+
2
]
+
padding_factor
>=
lengths
[
i
]);
std
::
size_t
dim_size
=
input_lens
[
i
+
2
]
+
padding_factor
-
lengths
[
i
];
std
::
size_t
len
=
(
ceil_mode
)
?
dim_size
/
stride
[
i
]
+
static_cast
<
std
::
size_t
>
((
dim_size
%
stride
[
i
]
!=
0
))
// ceil uint divide
:
dim_size
/
stride
[
i
];
// floor divide
output_lens
.
push_back
(
len
+
1
);
}
return
output_lens
;
}
...
...
@@ -134,19 +126,19 @@ struct pooling
{
for
(
size_t
i
=
0
;
i
<
kdims
;
++
i
)
{
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
1
,
1
,
1
});
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
1
,
1
});
}
return
{
input
.
type
(),
output_dyn_dims
};
}
else
{
// does not compute for optimals
auto
min_spatial_dims
=
calc_spatial_dim_out
(
input
.
min_lens
(),
kdims
);
auto
max_spatial_dims
=
calc_spatial_dim_out
(
input
.
max_lens
(),
kdims
);
auto
opt_spatial_dims
=
calc_spatial_dim_out
(
input
.
opt_lens
(),
kdims
);
for
(
size_t
i
=
0
;
i
<
kdims
;
++
i
)
{
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
min_spatial_dims
[
i
],
max_spatial_dims
[
i
],
opt_spatial_dims
[
i
]
});
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
min_spatial_dims
[
i
],
max_spatial_dims
[
i
],
{}
});
}
return
{
input
.
type
(),
output_dyn_dims
};
}
...
...
src/include/migraphx/op/quant_convolution.hpp
View file @
2fc6b715
...
...
@@ -25,8 +25,10 @@
#define MIGRAPHX_GUARD_OPERATORS_QUANT_CONVOLUTION_HPP
#include <migraphx/op/common.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
#include <migraphx/convolution.hpp>
#include <migraphx/value.hpp>
#include <cmath>
#include <utility>
...
...
@@ -114,6 +116,17 @@ struct quant_convolution
check_attribute_size
();
return
stride
.
size
();
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
result
.
visit
([
&
](
auto
output
)
{
visit_all
(
args
[
0
],
args
[
1
])([
&
](
auto
input
,
auto
weights
)
{
migraphx
::
convolution
(
output
,
input
,
weights
,
padding
,
stride
,
group
);
});
});
return
result
;
}
};
}
// namespace op
...
...
src/include/migraphx/op/quantizelinear.hpp
View file @
2fc6b715
...
...
@@ -40,7 +40,11 @@ struct quantizelinear
std
::
string
name
()
const
{
return
"quantizelinear"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
same_dims
();
check_shapes
{
inputs
,
*
this
}.
same_dims
().
has
(
2
,
3
);
if
(
inputs
[
0
].
type
()
!=
inputs
[
1
].
type
())
{
MIGRAPHX_THROW
(
"QUANTIZELINEAR: Scales and input must be the same type"
);
}
if
(
inputs
.
size
()
==
3
)
{
return
{
inputs
[
2
].
type
(),
inputs
[
0
].
lens
(),
inputs
[
0
].
strides
()};
...
...
@@ -61,17 +65,15 @@ struct quantizelinear
argument
result
{
output_shape
};
visit_all
(
result
,
y_zero_point
)([
&
](
auto
output
,
auto
zero_pts
)
{
x
.
visit
([
&
](
auto
input
)
{
y_scale
.
visit
([
&
](
auto
scales
)
{
using
quant_type
=
typename
decltype
(
output
)
::
value_type
;
auto
min_value
=
std
::
numeric_limits
<
quant_type
>::
min
();
auto
max_value
=
std
::
numeric_limits
<
quant_type
>::
max
();
par_for
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
int64_t
quantized
=
static_cast
<
int64_t
>
(
std
::
round
(
input
[
i
]
/
scales
[
i
]))
+
static_cast
<
int64_t
>
(
zero_pts
[
i
]);
output
[
i
]
=
std
::
max
(
static_cast
<
int64_t
>
(
min_value
),
std
::
min
(
static_cast
<
int64_t
>
(
max_value
),
quantized
));
});
visit_all
(
x
,
y_scale
)([
&
](
auto
input
,
auto
scales
)
{
using
quant_type
=
typename
decltype
(
output
)
::
value_type
;
auto
min_value
=
std
::
numeric_limits
<
quant_type
>::
min
();
auto
max_value
=
std
::
numeric_limits
<
quant_type
>::
max
();
par_for
(
output_shape
.
elements
(),
[
&
](
auto
i
)
{
int64_t
quantized
=
static_cast
<
int64_t
>
(
std
::
round
(
input
[
i
]
/
scales
[
i
]))
+
static_cast
<
int64_t
>
(
zero_pts
[
i
]);
output
[
i
]
=
std
::
max
(
static_cast
<
int64_t
>
(
min_value
),
std
::
min
(
static_cast
<
int64_t
>
(
max_value
),
quantized
));
});
});
});
...
...
src/include/migraphx/op/reduce_op.hpp
View file @
2fc6b715
...
...
@@ -91,7 +91,7 @@ struct reduce_op : op_name<Derived>
{
value
normalize
;
normalize
[
"axes"
]
=
value
::
array
{
normalize_attribute
::
include_min
};
return
{{
"normalize_axes"
,
normalize
}};
return
{{
"normalize_axes"
,
normalize
}
,
{
"reduce"
,
true
}
};
}
std
::
vector
<
int64_t
>
tune_axes
(
std
::
size_t
n_dim
)
const
...
...
@@ -123,9 +123,7 @@ struct reduce_op : op_name<Derived>
auto
tuned_axes
=
tune_axes
(
output_dyn_dims
.
size
());
for
(
const
auto
&
axis
:
tuned_axes
)
{
// At the time of writing, there's no functional difference between
// optimum of 0 (no opt) or 1.
output_dyn_dims
[
axis
]
=
{
1
,
1
,
0
};
output_dyn_dims
[
axis
]
=
{
1
,
1
};
}
return
shape
{
s
.
type
(),
output_dyn_dims
};
...
...
src/include/migraphx/op/reshape.hpp
View file @
2fc6b715
...
...
@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/optional.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -115,6 +116,10 @@ struct reshape
StrideIterator
stride_start
,
StrideIterator
stride_last
)
{
<<<<<<<
HEAD
=======
assert
(
std
::
distance
(
dim_start
,
dim_last
)
==
std
::
distance
(
stride_start
,
stride_last
));
>>>>>>>
origin
/
reshape
-
nonstandard
auto
cstride
=
*
std
::
prev
(
stride_last
);
return
std
::
equal
(
std
::
make_reverse_iterator
(
dim_last
),
std
::
make_reverse_iterator
(
dim_start
+
1
),
...
...
@@ -126,11 +131,93 @@ struct reshape
});
}
<<<<<<<
HEAD
shape
static_compute_shape
(
std
::
vector
<
shape
>
inputs
,
std
::
size_t
n_neg_dims
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
&&
idims
=
inputs
.
front
().
lens
();
auto
&&
istrides
=
inputs
.
front
().
strides
();
=======
static
optional
<
shape
>
reshape_dims
(
const
shape
&
input
,
const
std
::
vector
<
std
::
size_t
>&
rdims
)
{
if
(
input
.
standard
())
return
shape
{
input
.
type
(),
rdims
};
const
auto
&
idims
=
input
.
lens
();
const
auto
&
istrides
=
input
.
strides
();
std
::
vector
<
std
::
size_t
>
rstrides
;
std
::
size_t
i
=
0
;
std
::
size_t
r
=
0
;
while
(
i
<
idims
.
size
()
and
r
<
rdims
.
size
())
{
auto
idim
=
idims
[
i
];
auto
rdim
=
rdims
[
r
];
if
(
rdim
==
idim
)
{
rstrides
.
push_back
(
istrides
[
i
]);
}
// squeeze
else
if
(
rdim
>
idim
)
{
auto
start
=
idims
.
begin
()
+
i
;
auto
it
=
compute_end_dim
(
start
,
idims
.
end
(),
rdim
);
if
(
it
==
start
)
return
nullopt
;
auto
n
=
it
-
start
;
if
((
i
+
n
)
>
istrides
.
size
())
return
nullopt
;
if
(
not
can_strides_merge
(
start
,
it
+
1
,
istrides
.
begin
()
+
i
,
istrides
.
begin
()
+
i
+
n
+
1
))
return
nullopt
;
i
+=
n
;
rstrides
.
push_back
(
istrides
[
i
]);
}
// unsqueeze
else
// if(rdim < idim)
{
auto
start
=
rdims
.
begin
()
+
i
;
auto
it
=
compute_end_dim
(
start
,
rdims
.
end
(),
idim
);
if
(
it
==
start
)
return
nullopt
;
auto
n
=
it
-
start
;
if
((
r
+
n
)
>
rdims
.
size
())
return
nullopt
;
auto
stride
=
istrides
[
i
]
*
idim
;
std
::
for_each
(
start
,
it
+
1
,
[
&
](
auto
dim
)
{
stride
/=
dim
;
rstrides
.
push_back
(
stride
);
});
r
+=
n
;
}
i
++
;
r
++
;
}
// Handle trailing 1s
if
(
rstrides
.
size
()
<
rdims
.
size
()
and
not
rstrides
.
empty
())
{
auto
stride
=
rstrides
.
back
();
for
(
auto
d
:
range
(
rdims
.
begin
()
+
rstrides
.
size
(),
rdims
.
end
()))
{
if
(
d
!=
1
)
return
nullopt
;
rstrides
.
push_back
(
stride
);
}
}
if
(
rdims
.
size
()
!=
rstrides
.
size
())
return
nullopt
;
return
shape
{
input
.
type
(),
rdims
,
rstrides
};
}
shape
static_compute_shape
(
std
::
vector
<
shape
>
inputs
,
std
::
size_t
n_neg_dims
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
&&
idims
=
inputs
.
front
().
lens
();
// auto&& istrides = inputs.front().strides();
>>>>>>>
origin
/
reshape
-
nonstandard
std
::
vector
<
std
::
size_t
>
rdims
(
dims
.
begin
(),
dims
.
end
());
for
(
std
::
size_t
i
=
0
;
i
<
dims
.
size
();
i
++
)
...
...
@@ -156,6 +243,7 @@ struct reshape
}
}
<<<<<<<
HEAD
shape
s
;
if
(
inputs
.
front
().
standard
())
{
...
...
@@ -232,10 +320,19 @@ struct reshape
assert
(
s
.
bytes
()
==
inputs
.
front
().
bytes
());
if
(
s
.
elements
()
!=
inputs
.
front
().
elements
())
=======
auto
s
=
reshape_dims
(
inputs
.
front
(),
rdims
);
if
(
not
s
.
has_value
())
MIGRAPHX_THROW
(
"Reshape on axis that is not packed."
);
if
(
s
->
elements
()
!=
inputs
.
front
().
elements
())
>>>>>>>
origin
/
reshape
-
nonstandard
MIGRAPHX_THROW
(
"Reshape: Wrong number of elements for reshape: reshape has "
+
std
::
to_string
(
s
.
elements
())
+
" elements whereas the input has "
+
std
::
to_string
(
s
->
elements
())
+
" elements whereas the input has "
+
std
::
to_string
(
inputs
.
front
().
elements
()));
return
s
;
assert
(
s
->
bytes
()
==
inputs
.
front
().
bytes
());
return
*
s
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
...
...
src/include/migraphx/op/select_module.hpp
View file @
2fc6b715
...
...
@@ -43,50 +43,100 @@ struct select_module
std
::
string
name
()
const
{
return
"select_module"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
,
const
std
::
vector
<
module_ref
>&
)
const
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
,
const
std
::
vector
<
module_ref
>&
)
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has_at_least
(
1
);
return
shape
{
output_dyn_shapes
};
}
std
::
vector
<
std
::
string
>
get_input_parameter_names
(
module_ref
mod
)
const
{
auto
param_names
=
mod
->
get_parameter_names
();
std
::
vector
<
std
::
string
>
ret
;
std
::
copy_if
(
param_names
.
cbegin
(),
param_names
.
cend
(),
std
::
back_inserter
(
ret
),
[](
auto
pn
)
{
return
not
contains
(
pn
,
"#output_"
);
});
return
ret
;
}
std
::
vector
<
std
::
string
>
get_output_parameter_names
(
module_ref
mod
)
const
{
auto
param_names
=
mod
->
get_parameter_names
();
std
::
vector
<
std
::
string
>
ret
;
std
::
copy_if
(
param_names
.
cbegin
(),
param_names
.
cend
(),
std
::
back_inserter
(
ret
),
[](
auto
pn
)
{
return
contains
(
pn
,
"#output_"
);
});
return
ret
;
}
argument
compute
(
const
shape
&
,
const
std
::
vector
<
argument
>&
args
,
const
std
::
vector
<
module_ref
>&
submodule_list
,
const
std
::
function
<
std
::
vector
<
argument
>
(
module_ref
&
,
const
std
::
unordered_map
<
std
::
string
,
argument
>&
)
>&
run
)
const
{
// find submodule with input parameter shapes exactly the same as the input arguments
// assuming arguments are in the same order as the input parameters
// Find submodule with input parameter shapes exactly the same as the input instruction
// arguments. Assuming instruction arguments are in the same order as the instruction
// parameters.
auto
module_iter
=
std
::
find_if
(
submodule_list
.
cbegin
(),
submodule_list
.
cend
(),
[
&
](
module_ref
mr
)
{
auto
param_names
=
mr
->
ge
t_parameter_names
();
a
ssert
(
param_names
.
size
()
<=
args
.
size
()
);
return
std
::
equal
(
param_names
.
cbegin
(),
param_names
.
cend
(),
arg
s
.
cbegin
(),
[
&
](
auto
p_name
,
auto
a
)
{
return
a
.
get_shape
()
==
mr
->
get_parameter_shape
(
p_name
);
});
auto
in_
param_names
=
get_inpu
t_parameter_names
(
mr
);
a
uto
param_shapes
=
mr
->
get_parameter_shapes
(
);
assert
(
in_param_names
.
size
()
<=
args
.
size
());
return
std
::
equal
(
in_param_name
s
.
cbegin
(),
in_param_names
.
cend
(),
args
.
cbegin
(),
[
&
](
auto
p_name
,
auto
a
)
{
return
a
.
get_shape
()
==
param_shapes
[
p_name
];
});
});
if
(
module_iter
==
submodule_list
.
end
())
{
MIGRAPHX_THROW
(
"SELECT_MODULE: no compatible submodules found for given input shapes"
);
}
auto
*
module_to_run
=
*
module_iter
;
std
::
unordered_map
<
std
::
string
,
argument
>
p
arams
;
std
::
unordered_map
<
std
::
string
,
argument
>
p
_map
;
// add input parameters
auto
param_names
=
module_to_run
->
ge
t_parameter_names
();
assert
(
param_names
.
size
()
<=
args
.
size
());
std
::
transform
(
param_names
.
begin
(),
param_names
.
end
(),
// add input parameters
to parameter_map
auto
in_
param_names
=
get_inpu
t_parameter_names
(
module_to_run
);
assert
(
in_
param_names
.
size
()
<=
args
.
size
());
std
::
transform
(
in_
param_names
.
begin
(),
in_
param_names
.
end
(),
args
.
begin
(),
std
::
inserter
(
p
arams
,
params
.
end
()),
[](
auto
&&
name
,
auto
&&
a
)
{
return
std
::
make_pair
(
name
,
a
);
});
std
::
inserter
(
p
_map
,
p_map
.
end
()),
[
&
](
auto
&&
name
,
auto
&&
a
)
{
return
std
::
make_pair
(
name
,
a
);
});
auto
results
=
run
(
module_to_run
,
params
);
// One tuple output parameter in main module to multiple output parameters in submodule
auto
out_param_names
=
get_output_parameter_names
(
module_to_run
);
auto
output_sub_objects
=
args
.
back
().
get_sub_objects
();
assert
(
out_param_names
.
size
()
==
output_sub_objects
.
size
());
std
::
transform
(
out_param_names
.
begin
(),
out_param_names
.
end
(),
output_sub_objects
.
begin
(),
std
::
inserter
(
p_map
,
p_map
.
end
()),
[
&
](
auto
&&
name
,
auto
&&
a
)
{
auto
ps
=
module_to_run
->
get_parameter_shape
(
name
);
if
(
a
.
get_shape
()
!=
ps
)
{
assert
(
ps
.
bytes
()
==
a
.
get_shape
().
bytes
());
return
std
::
make_pair
(
name
,
a
.
reshape
(
ps
));
}
else
{
return
std
::
make_pair
(
name
,
a
);
}
});
auto
results
=
run
(
module_to_run
,
p_map
);
return
argument
{
results
};
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
{
return
shapes
.
size
()
-
1
;
}
};
}
// namespace op
...
...
src/include/migraphx/op/slice.hpp
View file @
2fc6b715
...
...
@@ -111,16 +111,15 @@ struct slice
// For a static shape, old_lens will be adjusted to a new size
// for those axes that are sliced.
// For dynamic shape, the adjusted old_lens become the new max values,
// while updating the old mins and opts if possible.
// while updating the old mins and opt
imal
s if possible.
std
::
vector
<
std
::
size_t
>
new_mins
;
std
::
vector
<
std
::
size_t
>
new_opts
;
std
::
vector
<
std
::
size_t
>
old_lens
;
std
::
vector
<
std
::
size_t
>
old_strides
;
// Doesn't handle optimals
if
(
input_shape
.
dynamic
())
{
old_lens
=
input_shape
.
max_lens
();
new_mins
=
input_shape
.
min_lens
();
new_opts
=
input_shape
.
opt_lens
();
}
else
{
...
...
@@ -146,17 +145,11 @@ struct slice
std
::
size_t
sliced_min_length
=
ends
[
i
]
-
starts
[
i
];
// if the slice size is smaller than maxes but larger than mins
new_mins
[
axis
]
=
std
::
min
(
sliced_min_length
,
new_mins
[
axis
]);
auto
sliced_opt_length
=
ends
[
i
]
-
starts
[
i
];
if
(
new_opts
[
axis
]
!=
0
)
new_opts
[
axis
]
=
sliced_opt_length
;
if
(
new_opts
[
axis
]
<
new_mins
[
axis
]
or
new_opts
[
axis
]
>
new_lens
[
axis
])
new_opts
[
axis
]
=
0
;
}
}
if
(
input_shape
.
dynamic
())
{
return
shape
{
t
,
new_mins
,
new_lens
,
new_opts
};
return
shape
{
t
,
new_mins
,
new_lens
,
{}
};
}
else
{
...
...
src/include/migraphx/op/unsqueeze.hpp
View file @
2fc6b715
...
...
@@ -81,7 +81,7 @@ struct unsqueeze
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
!=
axes
.
end
())
{
dyn_dims
.
push_back
({
1
,
1
,
0
});
dyn_dims
.
push_back
({
1
,
1
});
}
else
{
...
...
src/include/migraphx/pass_manager.hpp
View file @
2fc6b715
...
...
@@ -39,6 +39,7 @@ struct module_pass_manager
virtual
module
&
get_module
()
=
0
;
virtual
module
*
create_module
(
const
std
::
string
&
name
)
=
0
;
virtual
module
*
get_common_parent
()
=
0
;
virtual
module
*
get_root_module
()
=
0
;
virtual
void
run_pass
(
const
pass
&
p
)
=
0
;
protected:
...
...
src/include/migraphx/process.hpp
View file @
2fc6b715
...
...
@@ -26,6 +26,7 @@
#include <migraphx/config.hpp>
#include <migraphx/filesystem.hpp>
#include <functional>
#include <string>
#include <memory>
...
...
@@ -36,6 +37,7 @@ struct process_impl;
struct
process
{
using
writer
=
std
::
function
<
void
(
const
char
*
,
std
::
size_t
)
>
;
process
(
const
std
::
string
&
cmd
);
// move constructor
...
...
@@ -49,6 +51,7 @@ struct process
process
&
cwd
(
const
fs
::
path
&
p
);
void
exec
();
void
write
(
std
::
function
<
void
(
process
::
writer
)
>
pipe_in
);
private:
std
::
unique_ptr
<
process_impl
>
impl
;
...
...
src/
opt/memory_coloring.c
pp
→
src/
include/migraphx/promote_literals.h
pp
View file @
2fc6b715
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -21,20 +21,27 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/memory_coloring.hpp>
#include "memory_coloring_impl.hpp"
#ifndef MIGRAPHX_GUARD_RTGLIB_PROMOTE_LITERALS_HPP
#define MIGRAPHX_GUARD_RTGLIB_PROMOTE_LITERALS_HPP
#include <string>
#include <migraphx/pass_manager.hpp>
#include <migraphx/config.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
void
memory_coloring
::
apply
(
module
&
m
)
const
/**
* Replace literals in submodules with literals in the root module.
* Intended to allow for reuse of the literals between submodules.
*/
struct
promote_literals
{
if
(
not
enabled
(
MIGRAPHX_DISABLE_MEMORY_COLORING
{}))
{
memory_coloring_impl
opt
(
&
m
,
allocation_op
,
verify
);
opt
.
run
();
}
}
std
::
string
name
()
const
{
return
"promote_literals"
;
}
void
apply
(
module_pass_manager
&
)
const
;
};
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
Prev
1
2
3
4
5
6
7
…
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment