Unverified Commit 2ba401f0 authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'simplify_1_mul_div_ops' into divide_by_zero_check

parents a330d428 8398fb19
......@@ -55,8 +55,14 @@ inline std::vector<int64_t> sort_permutation(const Vector& data, Op op)
return result;
}
/*!
* Returns the permutation needed to apply to the shape to undo the current permutation
*/
std::vector<int64_t> invert_permutation(const std::vector<int64_t>& permutation);
/*!
* Finds the permutation most likely from a transpose operator that has been applied to the shape.
*/
std::vector<int64_t> find_permutation(const shape& s);
std::vector<int64_t> find_permutation(const std::vector<shape>& shapes);
......
......@@ -33,6 +33,8 @@
#include <migraphx/instruction_ref.hpp>
#include <migraphx/target.hpp>
#include <migraphx/compile_options.hpp>
#include <migraphx/target_assignments.hpp>
#include <migraphx/assignment_options.hpp>
#include <migraphx/env.hpp>
#include <migraphx/config.hpp>
#include <algorithm>
......@@ -84,6 +86,9 @@ struct program
instruction_ref validate() const;
target_assignments get_target_assignments(const std::vector<target>& targets,
assignment_options options = assignment_options{});
void compile(const target& t, compile_options options = compile_options{});
bool is_compiled() const;
......
......@@ -198,6 +198,12 @@ void transform(Range&& r, Iterator it, F f)
std::transform(r.begin(), r.end(), it, f);
}
template <class Range1, class Range2, class Iterator, class F>
void transform(Range1&& r1, Range2&& r2, Iterator it, F f)
{
std::transform(r1.begin(), r1.end(), r2.begin(), it, f);
}
template <class Range>
auto reverse(Range& r)
{
......
......@@ -82,6 +82,23 @@ struct shape
{
};
struct dynamic_dimension
{
std::size_t min = 0;
std::size_t max = 0;
std::size_t opt = 0;
template <class Self, class F>
static auto reflect(Self& self, F f);
bool is_fixed() const;
bool has_optimal() const;
friend bool operator==(const dynamic_dimension& x, const dynamic_dimension& y);
friend bool operator!=(const dynamic_dimension& x, const dynamic_dimension& y);
friend std::ostream& operator<<(std::ostream& os, const dynamic_dimension& x);
};
static const std::vector<type_t>& types();
static std::string name(type_t t);
......@@ -92,6 +109,12 @@ struct shape
shape(type_t t, std::vector<std::size_t> l);
shape(type_t t, std::vector<std::size_t> l, std::vector<std::size_t> s);
// Force all calls of the format `shape( type_t, { size_t compatibles } )` to map to
// shape(type_t, std::vector<std::size_t> l)
shape(type_t t, std::initializer_list<std::size_t> d);
shape(type_t t, std::vector<dynamic_dimension> dims);
template <class Range>
shape(type_t t, const Range& l) : shape(t, std::vector<std::size_t>(l.begin(), l.end()))
{
......@@ -112,10 +135,44 @@ struct shape
type_t type() const;
const std::vector<std::size_t>& lens() const;
const std::vector<std::size_t>& strides() const;
/*!
* Return the number of elements in the tensor.
*/
std::size_t elements() const;
/*!
* Return the number of total bytes used for storage of the tensor data; includes subshapes.
* For dynamic shape, returns the maximum number of bytes presuming a packed shape.
*/
std::size_t bytes() const;
/*!
* Return the size of the type of the main shape.
* Returns 0 if there are subshapes.
*/
std::size_t type_size() const;
const std::vector<dynamic_dimension>& dyn_dims() const;
/*!
* Minimum lengths for dynamic shape.
* lens() for fixed shape.
*/
std::vector<std::size_t> min_lens() const;
/*!
* Maximum lengths for dynamic shape.
* lens() for fixed shape.
*/
std::vector<std::size_t> max_lens() const;
/*!
* Optimum lengths for dynamic shape.
* lens() for fixed shape.
*/
std::vector<std::size_t> opt_lens() const;
/// Map multiple indices to space index
std::size_t index(std::initializer_list<std::size_t> l) const;
/// Map multiple indices to space index
......@@ -136,19 +193,27 @@ struct shape
std::vector<std::size_t> multi(std::size_t i) const;
void multi_copy(std::size_t i, std::size_t* start, const std::size_t* end) const;
/// Returns true if the shape is packed with no padding
/// Returns true if the shape is packed (number of elements and buffer size the same) with no
/// padding
bool packed() const;
/// Returns true is the shape has been transposed. That is the strides are not in descending
/// order
bool transposed() const;
/// Returns true if the shape is broadcasting a dimension. That is, one of the strides are zero
bool broadcasted() const;
/// Returns true if the shape is in its standard format. That is, the shape is both packed and
/// not transposed.
bool standard() const;
/// Returns true if all strides are equal to 0 (scalar tensor)
bool scalar() const;
/// Return true if the shape is dynamic
bool dynamic() const;
shape normalize_standard() const;
shape with_lens(type_t t, const std::vector<std::size_t>& l) const;
......@@ -191,6 +256,10 @@ struct shape
std::size_t size(std::size_t n = 1) const { return sizeof(type) * n; }
auto is_integral() const { return std::is_integral<type>{}; }
auto is_signed() const { return std::is_signed<type>{}; }
auto is_unsigned() const { return std::is_unsigned<type>{}; }
template <class U>
type* from(U* buffer, std::size_t n = 0) const
{
......@@ -248,6 +317,11 @@ struct shape
const std::vector<shape>& sub_shapes() const;
/*!
* Returns the number of elements in the data buffer.
* For a dynamic shape, returns the maximum number of elements of the data buffer and assumes it
* is packed.
*/
std::size_t element_space() const;
private:
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_MIGRAPHX_SUPPORT_METRIC_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_SUPPORT_METRIC_HPP
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
enum class support_metric
{
latency,
throughput
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_MIGRAPHX_SUPPORT_METRIC_HPP
......@@ -37,6 +37,8 @@
#include <migraphx/compile_options.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/rank.hpp>
#include <migraphx/support_metric.hpp>
#include <migraphx/instruction_ref.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -61,6 +63,13 @@ struct target
* @return The context to be used during compilation and execution.
*/
context get_context() const;
/**
* @brief Check how well an instruction is supported on a target with the given metric
* @param ins Instruction to check if it's supported
* @param metric Used to define how the return value should be interpreted
* @return The value based on the chosen metric. Negative numbers mean unsupported
*/
float is_supported(T&, instruction_ref ins, support_metric m) const;
/**
* @brief copy an argument to the current target.
*
......@@ -105,6 +114,12 @@ argument copy_from_target(T&, const argument& arg)
return arg;
}
template <class T>
float target_is_supported(T&, instruction_ref, support_metric)
{
return 0;
}
#ifdef TYPE_ERASED_DECLARATION
// Type-erased interface for:
......@@ -117,6 +132,8 @@ struct target
//
context get_context() const;
// (optional)
float is_supported(instruction_ref ins, support_metric m) const;
// (optional)
argument copy_to(const argument& input) const;
// (optional)
argument copy_from(const argument& input) const;
......@@ -207,6 +224,12 @@ struct target
return (*this).private_detail_te_get_handle().get_context();
}
float is_supported(instruction_ref ins, support_metric m) const
{
assert((*this).private_detail_te_handle_mem_var);
return (*this).private_detail_te_get_handle().is_supported(ins, m);
}
argument copy_to(const argument& input) const
{
assert((*this).private_detail_te_handle_mem_var);
......@@ -242,11 +265,31 @@ struct target
virtual std::vector<pass> get_passes(context& ctx,
const compile_options& options) const = 0;
virtual context get_context() const = 0;
virtual float is_supported(instruction_ref ins, support_metric m) const = 0;
virtual argument copy_to(const argument& input) const = 0;
virtual argument copy_from(const argument& input) const = 0;
virtual argument allocate(const shape& s) const = 0;
};
template <class T>
static auto private_detail_te_default_is_supported(char,
T&& private_detail_te_self,
instruction_ref ins,
support_metric m)
-> decltype(private_detail_te_self.is_supported(ins, m))
{
return private_detail_te_self.is_supported(ins, m);
}
template <class T>
static float private_detail_te_default_is_supported(float,
T&& private_detail_te_self,
instruction_ref ins,
support_metric m)
{
return target_is_supported(private_detail_te_self, ins, m);
}
template <class T>
static auto
private_detail_te_default_copy_to(char, T&& private_detail_te_self, const argument& input)
......@@ -329,6 +372,12 @@ struct target
context get_context() const override { return private_detail_te_value.get_context(); }
float is_supported(instruction_ref ins, support_metric m) const override
{
return private_detail_te_default_is_supported(char(0), private_detail_te_value, ins, m);
}
argument copy_to(const argument& input) const override
{
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_MIGRAPHX_ASSIGNMENT_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_ASSIGNMENT_HPP
#include <unordered_map>
#include <migraphx/instruction_ref.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct target_assignments
{
void add_assignment(instruction_ref ins, const std::string& target);
auto begin() const { return assignments.cbegin(); }
auto end() const { return assignments.cend(); }
private:
std::unordered_map<instruction_ref, std::string> assignments;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_MIGRAPHX_ASSIGNMENT_HPP
......@@ -410,7 +410,8 @@ module::add_instructions(const std::vector<instruction_ref>& instructions,
}
std::vector<instruction_ref>
module::add_instructions(module_ref m, std::unordered_map<instruction_ref, instruction_ref> map_ins)
module::add_instructions(const_module_ref m,
std::unordered_map<instruction_ref, instruction_ref> map_ins)
{
return this->insert_instructions(this->end(), m, std::move(map_ins));
}
......@@ -431,8 +432,10 @@ module::insert_instructions(instruction_ref ins,
return insert_generic_instructions(*this, ins, instructions, std::move(map_ins));
}
std::vector<instruction_ref> module::insert_instructions(
instruction_ref ins, module_ref m, std::unordered_map<instruction_ref, instruction_ref> map_ins)
std::vector<instruction_ref>
module::insert_instructions(instruction_ref ins,
const_module_ref m,
std::unordered_map<instruction_ref, instruction_ref> map_ins)
{
return insert_generic_instructions(*this, ins, iterator_for(*m), std::move(map_ins));
}
......@@ -447,11 +450,7 @@ module::insert_instructions(instruction_ref ins,
return insert_generic_instructions(*this, ins, iterator_for(r), std::move(map_ins));
}
instruction_ref module::add_literal(literal l)
{
impl->emplace_front(std::move(l));
return impl->instructions.begin();
}
instruction_ref module::add_literal(literal l) { return insert_literal(begin(), std::move(l)); }
instruction_ref module::add_outline(const shape& s)
{
......@@ -461,10 +460,7 @@ instruction_ref module::add_outline(const shape& s)
instruction_ref module::add_parameter(std::string name, shape s)
{
assert(get_parameter_shape(name) == shape{});
impl->push_front({builtin::param{std::move(name), impl->nparams}, std::move(s), {}});
impl->nparams++;
return impl->instructions.begin();
return insert_parameter(begin(), std::move(name), std::move(s));
}
instruction_ref module::add_return(std::vector<instruction_ref> args)
......@@ -477,6 +473,20 @@ instruction_ref module::add_return(std::vector<instruction_ref> args)
return result;
}
instruction_ref module::insert_literal(instruction_ref ins, literal l)
{
impl->emplace(ins, std::move(l));
return std::prev(ins);
}
instruction_ref module::insert_parameter(instruction_ref ins, std::string name, shape s)
{
assert(get_parameter_shape(name) == shape{});
impl->insert(ins, {builtin::param{std::move(name), impl->nparams}, std::move(s), {}});
impl->nparams++;
return std::prev(ins);
}
instruction_ref module::replace_return(std::vector<instruction_ref> args)
{
auto last = std::prev(this->end());
......
......@@ -93,9 +93,10 @@ struct onnx_parser
onnx_parser&, const node_info&, std::vector<instruction_ref>)>;
node_map nodes;
std::unordered_map<std::string, instruction_ref> instructions;
program prog = program();
std::size_t default_dim_value = 1;
program prog = program();
shape::dynamic_dimension default_dyn_dim_value = {1, 1, 0};
std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
std::unordered_map<std::string, std::vector<shape::dynamic_dimension>> map_dyn_input_dims;
bool skip_unknown_operators = false;
int64_t max_loop_iterations = 10;
int64_t opset_version = 13;
......
......@@ -41,8 +41,25 @@ template <class... Ts>
program parse_onnx_from(const onnx_options& options, Ts&&... xs)
{
onnx::onnx_parser parser;
parser.map_input_dims = options.map_input_dims;
parser.default_dim_value = options.default_dim_value;
parser.map_input_dims = options.map_input_dims;
parser.map_dyn_input_dims = options.map_dyn_input_dims;
auto dim_val = options.default_dim_value;
if(dim_val != 0)
{
if(options.default_dyn_dim_value != shape::dynamic_dimension{1, 1, 0})
{
MIGRAPHX_THROW("PARSE_ONNX_FROM: both default_dim_value and default_dyn_dim_value"
"set to non-default value");
}
else
{
parser.default_dyn_dim_value = {dim_val, dim_val, 0};
}
}
else
{
parser.default_dyn_dim_value = options.default_dyn_dim_value;
}
parser.skip_unknown_operators = options.skip_unknown_operators;
parser.max_loop_iterations = options.max_loop_iterations;
......
......@@ -35,9 +35,11 @@
#include <migraphx/file_buffer.hpp>
#include <migraphx/filesystem.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/env.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
static onnx_parser::attribute_map get_attributes(const onnx::NodeProto& node)
......@@ -255,6 +257,11 @@ int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
{
if(not map_input_dims.empty() and not map_dyn_input_dims.empty())
{
MIGRAPHX_THROW("PARSE_GRAPH: both map_input_dims and map_dyn_input_dims non-empty, only"
"one should be used");
}
std::unordered_map<std::string, instruction_ref> mod_insts;
for(auto&& f : graph.initializer())
{
......@@ -268,7 +275,7 @@ void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
// input not in initializer_data, so it is a real input
if(!contains(mod_insts, name))
{
// ONNX specification does not specify hwo to deal with the
// ONNX specification does not specify how to deal with the
// scenario that a nested subgraph contains a parameter with the
// name existed in its parent graph.
// In the current implementation, MIGraphX throws an exception for that.
......@@ -278,13 +285,22 @@ void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
"\" existing in parent graph!");
}
shape s;
std::vector<std::size_t> dims;
if(map_input_dims.count(name) > 0)
{
dims = map_input_dims.at(name);
s = parse_type(input.type(), dims);
}
else if(map_dyn_input_dims.count(name) > 0)
{
shape::type_t shape_type = get_type(input.type().tensor_type().elem_type());
s = {shape_type, map_dyn_input_dims.at(name)};
}
else
{
s = parse_type(input.type(), dims);
}
shape s = parse_type(input.type(), dims);
mod_insts[name] = mod->add_parameter(name, s);
}
}
......@@ -439,30 +455,41 @@ shape onnx_parser::parse_type(const onnx::TypeProto& t,
return {shape_type, input_dims};
}
std::vector<std::size_t> dims;
std::vector<shape::dynamic_dimension> dynamic_dims;
auto&& tensor_dims = t.tensor_type().shape().dim();
std::transform(tensor_dims.begin(),
tensor_dims.end(),
std::back_inserter(dims),
[&](auto&& d) -> std::size_t {
std::back_inserter(dynamic_dims),
[&](auto&& d) -> shape::dynamic_dimension {
if(d.has_dim_value())
{
if(static_cast<int>(d.dim_value()) <= 0)
{
return default_dim_value;
return default_dyn_dim_value;
}
return d.dim_value();
std::size_t tmp = d.dim_value();
return {tmp, tmp, 0};
}
else
{
return default_dim_value;
return default_dyn_dim_value;
}
});
if(dims.empty())
if(dynamic_dims.empty())
{
return {shape_type};
return {shape_type, dims};
}
if(std::all_of(dynamic_dims.begin(), dynamic_dims.end(), [](auto dd) { return dd.is_fixed(); }))
{
std::vector<std::size_t> dims;
std::transform(dynamic_dims.begin(),
dynamic_dims.end(),
std::back_inserter(dims),
[](auto d) { return d.max; });
return {shape_type, dims};
}
return {shape_type, dynamic_dims};
}
shape::type_t get_type(int dtype)
......
......@@ -159,6 +159,25 @@ instruction_ref program::validate() const
return mm->validate();
}
target_assignments program::get_target_assignments(const std::vector<target>& targets,
assignment_options options)
{
const auto m = options.metric;
target_assignments p;
const auto* mod = get_main_module();
for(auto it : iterator_for(*mod))
{
auto t = std::max_element(
targets.begin(), targets.end(), [it, m](const target& lhs, const target& rhs) {
return lhs.is_supported(it, m) < rhs.is_supported(it, m);
});
p.add_assignment(it, t->name());
}
return p;
}
bool program::is_compiled() const { return not this->impl->target_name.empty(); }
void program::compile(const target& t, compile_options options)
......@@ -514,12 +533,14 @@ static void mod_from_val(module_ref mod,
if(name == "@param")
{
output = mod->add_parameter(fields["parameter"].to<std::string>(),
migraphx::from_value<shape>(node.at("shape")));
output = mod->insert_parameter(mod->end(),
fields["parameter"].to<std::string>(),
migraphx::from_value<shape>(node.at("shape")));
}
else if(name == "@literal")
{
output = mod->add_literal(migraphx::from_value<literal>(node.at("literal")));
output =
mod->insert_literal(mod->end(), migraphx::from_value<literal>(node.at("literal")));
}
else
{
......@@ -554,11 +575,11 @@ static void mod_from_val(module_ref mod,
}
else if(module_inputs.empty())
{
output = mod->add_instruction(op, inputs);
output = mod->insert_instruction(mod->end(), op, inputs);
}
else
{
output = mod->add_instruction(op, inputs, module_inputs);
output = mod->insert_instruction(mod->end(), op, inputs, module_inputs);
}
}
output->set_normalized(normalized);
......@@ -691,11 +712,13 @@ void program::perf_report(std::ostream& os,
double overhead_percent = overhead_time * 100.0 / total_time;
double total_instruction_time = 0.0;
std::unordered_map<std::string, double> op_times;
std::unordered_map<std::string, std::size_t> op_n;
for(auto&& p : ins_vec)
{
double avg = common_average(p.second);
op_times[perf_group(p.first->get_operator())] += avg;
total_instruction_time += avg;
op_n[perf_group(p.first->get_operator())]++;
}
double calculate_overhead_time = total_time - total_instruction_time;
double calculate_overhead_percent = calculate_overhead_time * 100.0 / total_time;
......@@ -716,18 +739,19 @@ void program::perf_report(std::ostream& os,
os << std::endl;
os << "Summary:" << std::endl;
std::vector<std::pair<double, std::string>> op_times_sorted;
std::transform(op_times.begin(),
op_times.end(),
std::back_inserter(op_times_sorted),
[](auto p) { return std::make_pair(p.second, p.first); });
std::vector<std::tuple<double, std::size_t, std::string>> op_times_sorted;
std::transform(
op_times.begin(), op_times.end(), std::back_inserter(op_times_sorted), [&](auto p) {
auto&& name = p.first;
return std::make_tuple(p.second, op_n.at(name), name);
});
std::sort(op_times_sorted.begin(), op_times_sorted.end(), std::greater<>{});
for(auto&& p : op_times_sorted)
for(auto&& [avg, nn, name] : op_times_sorted)
{
auto&& name = p.second;
double avg = p.first;
double percent = std::ceil(100.0 * avg / total_instruction_time);
os << name << ": " << avg << "ms, " << percent << "%" << std::endl;
double per_ins = avg / nn;
os << name << ": " << avg << "ms / " << nn << " = " << per_ins << "ms, " << percent << "%"
<< std::endl;
}
os << std::endl;
......
......@@ -36,7 +36,7 @@ void raw_data_to_value(value& v, const RawData& rd)
result["shape"] = migraphx::to_value(rd.get_shape());
if(rd.get_shape().type() == shape::tuple_type)
result["sub"] = migraphx::to_value(rd.get_sub_objects());
else
else if(not rd.empty())
result["data"] = migraphx::value::binary(rd.data(), rd.get_shape().bytes());
v = result;
}
......@@ -56,7 +56,7 @@ void migraphx_from_value(const value& v, argument& a)
literal l = migraphx::from_value<literal>(v);
a = l.get_argument();
}
else
else if(v.contains("sub"))
{
a = migraphx::from_value<std::vector<argument>>(v.at("sub"));
}
......
......@@ -26,6 +26,7 @@
#include <migraphx/stringutils.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/permutation.hpp>
#include <migraphx/ranges.hpp>
#include <numeric>
#include <algorithm>
#include <functional>
......@@ -65,13 +66,21 @@ struct shape_impl
std::is_sorted(m_strides.rbegin(), m_strides.rend());
}
shape_impl(shape::type_t t, std::vector<shape::dynamic_dimension> dims)
: m_type(t), m_dyn_dims(std::move(dims))
{
}
shape_impl(const std::vector<shape>& subs) : m_type(shape::tuple_type), m_shapes(subs) {}
shape::type_t m_type;
std::vector<std::size_t> m_lens = {};
std::vector<std::size_t> m_strides = {};
std::vector<shape> m_shapes = {};
bool m_standard = false;
std::vector<shape::dynamic_dimension> m_dyn_dims = {};
void calculate_strides()
{
m_strides.clear();
......@@ -87,6 +96,12 @@ struct shape_impl
std::size_t element_space() const
{
if(not m_dyn_dims.empty())
{
auto maxes = max_lens();
return std::accumulate(maxes.begin(), maxes.end(), std::size_t{1}, std::multiplies<>());
}
assert(m_lens.size() == m_strides.size());
if(m_lens.empty())
return 0;
......@@ -101,6 +116,11 @@ struct shape_impl
std::size_t elements() const
{
if(not m_dyn_dims.empty())
{
MIGRAPHX_THROW("SHAPE: elements() called on dynamic shape");
}
assert(m_lens.size() == m_strides.size());
if(m_lens.empty())
return 0;
......@@ -108,6 +128,35 @@ struct shape_impl
m_lens.begin(), m_lens.end(), std::size_t{1}, std::multiplies<std::size_t>());
}
std::vector<std::size_t> min_lens() const
{
std::vector<std::size_t> ret(m_dyn_dims.size());
std::transform(m_dyn_dims.cbegin(),
m_dyn_dims.cend(),
ret.begin(),
[](shape::dynamic_dimension x) { return x.min; });
return ret;
}
std::vector<std::size_t> max_lens() const
{
std::vector<std::size_t> ret(m_dyn_dims.size());
std::transform(m_dyn_dims.cbegin(),
m_dyn_dims.cend(),
ret.begin(),
[](shape::dynamic_dimension x) { return x.max; });
return ret;
}
std::vector<std::size_t> opt_lens() const
{
std::vector<std::size_t> ret(m_dyn_dims.size());
std::transform(m_dyn_dims.cbegin(),
m_dyn_dims.cend(),
ret.begin(),
[](shape::dynamic_dimension x) { return x.opt; });
return ret;
}
// Does the shape skip over elements?
bool skips() const
{
......@@ -165,6 +214,16 @@ shape::shape(type_t t, std::vector<std::size_t> l, std::vector<std::size_t> s)
{
}
shape::shape(type_t t, std::initializer_list<std::size_t> d)
: shape::shape(t, std::vector<std::size_t>{d.begin(), d.end()})
{
}
shape::shape(type_t t, std::vector<shape::dynamic_dimension> dims)
: impl(std::make_shared<shape_impl>(t, std::move(dims)))
{
}
shape::shape(const std::vector<shape>& subs) : impl(std::make_shared<shape_impl>(subs)) {}
shape::shape(std::shared_ptr<shape_impl> pimpl) : impl(std::move(pimpl)) {}
......@@ -180,9 +239,13 @@ shape shape::from_permutation(type_t t,
}
shape::type_t shape::type() const { return impl->m_type; }
const std::vector<std::size_t>& shape::lens() const { return impl->m_lens; }
const std::vector<std::size_t>& shape::strides() const { return impl->m_strides; }
std::size_t shape::elements() const { return impl->elements(); }
std::size_t shape::bytes() const
{
if(this->sub_shapes().empty())
......@@ -199,6 +262,7 @@ std::size_t shape::bytes() const
[&](auto x, auto y) { return x + y.bytes(); });
}
}
std::size_t shape::type_size() const
{
std::size_t n = 0;
......@@ -206,20 +270,35 @@ std::size_t shape::type_size() const
this->visit_type([&](auto as) { n = as.size(); });
return n;
}
std::size_t shape::index(std::initializer_list<std::size_t> l) const
{
if(this->dynamic())
{
MIGRAPHX_THROW("SHAPE: index() called on dynamic shape");
}
assert(l.size() <= this->lens().size());
assert(this->lens().size() == this->strides().size());
return std::inner_product(l.begin(), l.end(), this->strides().begin(), std::size_t{0});
}
std::size_t shape::index(const std::vector<std::size_t>& l) const
{
if(this->dynamic())
{
MIGRAPHX_THROW("SHAPE: index() called on dynamic shape");
}
assert(l.size() <= this->lens().size());
assert(this->lens().size() == this->strides().size());
return std::inner_product(l.begin(), l.end(), this->strides().begin(), std::size_t{0});
}
std::size_t shape::index(std::size_t i) const
{
if(this->dynamic())
{
MIGRAPHX_THROW("SHAPE: index() called on dynamic shape");
}
assert(this->lens().size() == this->strides().size());
if(this->standard())
return i;
......@@ -267,12 +346,20 @@ void shape::multi_copy(std::size_t i, std::size_t* start, const std::size_t* end
bool shape::packed() const
{
if(this->dynamic())
{
return false;
}
return this->sub_shapes().empty() and not impl->skips() and
this->elements() == this->element_space();
}
bool shape::transposed() const
{
if(this->dynamic())
{
return false;
}
if(this->broadcasted())
{
// TODO: Use a filter_iterator instead
......@@ -292,6 +379,10 @@ bool shape::transposed() const
bool shape::broadcasted() const
{
if(this->dynamic())
{
return false;
}
assert(this->lens().size() == this->strides().size());
return std::any_of(
this->strides().begin(), this->strides().end(), [](auto x) { return x == 0; });
......@@ -299,6 +390,10 @@ bool shape::broadcasted() const
bool shape::scalar() const
{
if(this->dynamic())
{
return false;
}
assert(this->lens().size() == this->strides().size());
// if any stride > 0, then accumulate will return false
return this->sub_shapes().empty() and
......@@ -317,6 +412,10 @@ shape shape::normalize_standard() const
shape shape::with_lens(type_t t, const std::vector<std::size_t>& l) const
{
if(this->dynamic())
{
MIGRAPHX_THROW("SHAPE: with_lens() called on dynamic shape");
}
assert(l.size() == this->lens().size());
auto perm = find_permutation(*this);
return shape::from_permutation(t, l, perm);
......@@ -324,6 +423,10 @@ shape shape::with_lens(type_t t, const std::vector<std::size_t>& l) const
shape shape::with_lens(const std::vector<std::size_t>& l) const
{
if(this->dynamic())
{
MIGRAPHX_THROW("SHAPE: with_lens() called on dynamic shape");
}
return this->with_lens(this->type(), l);
}
......@@ -338,20 +441,80 @@ std::size_t shape::element_space() const { return impl->element_space(); }
std::string shape::type_string() const { return name(this->type()); }
bool shape::dynamic() const { return not impl->m_dyn_dims.empty(); }
const std::vector<shape::dynamic_dimension>& shape::dyn_dims() const { return impl->m_dyn_dims; }
std::vector<std::size_t> shape::min_lens() const
{
return this->dynamic() ? impl->min_lens() : this->lens();
}
std::vector<std::size_t> shape::max_lens() const
{
return this->dynamic() ? impl->max_lens() : this->lens();
}
std::vector<std::size_t> shape::opt_lens() const
{
return this->dynamic() ? impl->opt_lens() : this->lens();
}
bool shape::dynamic_dimension::is_fixed() const { return this->min == this->max; }
bool shape::dynamic_dimension::has_optimal() const { return opt != 0; }
template <class Self, class F>
auto shape::dynamic_dimension::reflect(Self& self, F f)
{
return pack(f(self.min, "min"), f(self.max, "max"), f(self.opt, "opt"));
}
bool operator==(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y)
{
return (x.min == y.min and x.max == y.max and x.opt == y.opt);
}
bool operator!=(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y)
{
return !(x == y);
}
std::ostream& operator<<(std::ostream& os, const shape::dynamic_dimension& x)
{
os << "[" << x.min << ", " << x.max << ", " << x.opt << "]";
return os;
}
bool operator==(const shape& x, const shape& y)
{
return x.impl == y.impl or (x.type() == y.type() and x.lens() == y.lens() and
x.strides() == y.strides() and x.sub_shapes() == y.sub_shapes());
if(x.dynamic() and y.dynamic())
{
return x.impl == y.impl or (x.type() == y.type() and x.dyn_dims() == y.dyn_dims() and
x.sub_shapes() == y.sub_shapes());
}
return x.impl == y.impl or
(x.dynamic() == y.dynamic() and x.type() == y.type() and x.lens() == y.lens() and
x.strides() == y.strides() and x.sub_shapes() == y.sub_shapes());
}
bool operator!=(const shape& x, const shape& y) { return !(x == y); }
std::ostream& operator<<(std::ostream& os, const shape& x)
{
if(x.sub_shapes().empty())
{
os << x.type_string() << ", ";
os << "{" << to_string_range(x.lens()) << "}, ";
os << "{" << to_string_range(x.strides()) << "}";
if(x.dynamic())
{
os << "dynamic, ";
os << x.type_string() << ", ";
os << "{" << to_string_range(x.dyn_dims()) << "}";
}
else
{
os << x.type_string() << ", ";
os << "{" << to_string_range(x.lens()) << "}, ";
os << "{" << to_string_range(x.strides()) << "}";
}
}
else
{
......@@ -375,12 +538,14 @@ const std::vector<shape>& shape::sub_shapes() const { return impl->m_shapes; }
void migraphx_to_value(value& v, const shape& s)
{
value result;
result["type"] = migraphx::to_value(s.type_string());
result["lens"] = migraphx::to_value(s.lens());
result["strides"] = migraphx::to_value(s.strides());
result["sub_shapes"] = migraphx::to_value(s.sub_shapes());
v = result;
result["type"] = migraphx::to_value(s.type_string());
result["lens"] = migraphx::to_value(s.lens());
result["strides"] = migraphx::to_value(s.strides());
result["sub_shapes"] = migraphx::to_value(s.sub_shapes());
result["dynamic_dimensions"] = migraphx::to_value(s.dyn_dims());
v = result;
}
void migraphx_from_value(const value& v, shape& s)
{
auto t = v.at("type").get_string();
......@@ -390,9 +555,25 @@ void migraphx_from_value(const value& v, shape& s)
}
else
{
s = shape{shape::parse_type(t),
v.at("lens").to_vector<std::size_t>(),
v.at("strides").to_vector<std::size_t>()};
if(v.at("dynamic_dimensions").empty())
{
s = shape{shape::parse_type(t),
v.at("lens").to_vector<std::size_t>(),
v.at("strides").to_vector<std::size_t>()};
}
else
{
auto v_dd = v.at("dynamic_dimensions");
std::vector<shape::dynamic_dimension> dyn_dims(v.at("dynamic_dimensions").size());
std::transform(v_dd.begin(), v_dd.end(), dyn_dims.begin(), [](migraphx::value x) {
auto x_min = x.at("min").template to<size_t>();
auto x_max = x.at("max").template to<size_t>();
auto x_opt = x.at("opt").template to<size_t>();
return shape::dynamic_dimension{x_min, x_max, x_opt};
});
s = shape{shape::parse_type(t), dyn_dims};
}
}
}
......
......@@ -272,7 +272,7 @@ struct find_concat_transpose
{
auto matcher() const
{
return match::name("concat")(match::all_of[match::inputs()](match::transpose_shape()));
return match::name("concat")(match::all_of[match::inputs()](match::name("transpose")));
}
void apply(module& m, const match::matcher_result& mr) const
......@@ -601,6 +601,69 @@ struct find_transpose_contiguous_reshaper_unary
}
};
struct find_slice_transpose
{
auto matcher() const
{
return match::any(match::any_of[match::outputs()](
match::name("slice")(match::output(match::name("transpose")))));
}
static std::vector<int64_t> find_common_perm(const std::vector<instruction_ref>& transposes)
{
std::map<std::vector<int64_t>, int64_t> count;
for(auto t : transposes)
{
auto perm = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
count[perm]++;
}
return std::max_element(
count.begin(), count.end(), by(std::less<>{}, [](auto&& p) { return p.second; }))
->first;
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
std::vector<instruction_ref> splits;
std::copy_if(ins->outputs().begin(),
ins->outputs().end(),
std::back_inserter(splits),
[&](instruction_ref out) {
return out->name() == "slice" and out->outputs().size() == 1 and
out->outputs().front()->name() == "transpose";
});
if(splits.size() < 2)
return;
std::vector<instruction_ref> transposes;
std::transform(splits.begin(),
splits.end(),
std::back_inserter(transposes),
[](auto split) { return split->outputs().front(); });
auto perm = find_common_perm(transposes);
auto iperm = invert_permutation(perm);
auto pre = m.insert_instruction(
std::next(ins), make_op("transpose", {{"permutation", perm}}), ins);
for(auto i : range(transposes.size()))
{
auto split = splits[i];
auto t = transposes[i];
auto op = any_cast<op::slice>(split->get_operator());
std::transform(op.axes.begin(), op.axes.end(), op.axes.begin(), [&](auto axis) {
return iperm[axis];
});
auto new_ins = m.insert_instruction(t, op, pre);
if(t->get_operator() != pre->get_operator())
{
auto curr = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
new_ins = m.insert_instruction(
t, make_op("transpose", {{"permutation", reorder_dims(iperm, curr)}}), new_ins);
}
m.replace_instruction(t, new_ins);
}
}
};
void simplify_reshapes::apply(module& m) const
{
for(int i = 0; i < 2; i++)
......@@ -616,6 +679,7 @@ void simplify_reshapes::apply(module& m) const
find_nested_convert{},
find_nested_slice{},
find_nested_concat{},
find_slice_transpose{},
find_transpose_contiguous_reshaper_unary{});
dead_code_elimination{}.apply(m);
}
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/target_assignments.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void target_assignments::add_assignment(instruction_ref ins, const std::string& target)
{
assignments.emplace(ins, target);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -25,6 +25,7 @@
#include <migraphx/module.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/register_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -52,6 +53,7 @@ struct cpu_literal
return os;
}
};
MIGRAPHX_REGISTER_OP(cpu_literal);
void write_literals::apply(module& m) const
{
......
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
add_library(migraphx_fpga
target.cpp
lowering.cpp
subgraph.cpp
vitis_ai_adapter.cpp
)
set_target_properties(migraphx_fpga PROPERTIES EXPORT_NAME fpga)
rocm_set_soversion(migraphx_fpga ${MIGRAPHX_SO_VERSION})
rocm_clang_tidy_check(migraphx_fpga)
target_link_libraries(migraphx_fpga migraphx)
rocm_install_targets(
TARGETS migraphx_fpga
INCLUDE
${CMAKE_CURRENT_SOURCE_DIR}/include
)
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_FPGA_CONTEXT_HPP
#define MIGRAPHX_GUARD_FPGA_CONTEXT_HPP
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace fpga {
struct context
{
int id = 0;
void finish() const {}
};
} // namespace fpga
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_FPGA_CONTEXT_HPP
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_FPGA_LOWERING_HPP
#define MIGRAPHX_GUARD_FPGA_LOWERING_HPP
#include <migraphx/program.hpp>
#include <migraphx/config.hpp>
#include <migraphx/fpga/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace fpga {
struct lowering
{
context* ctx = nullptr;
std::string name() const { return "fpga::lowering"; }
void apply(module& m) const;
};
} // namespace fpga
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_FPGA_LOWERING_HPP
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment