Unverified Commit 2466dd6f authored by Shucai Xiao's avatar Shucai Xiao Committed by GitHub
Browse files

Refactor program to module (#684)



* code backup

* clang format

* change corresponding tool files

* clang format
Co-authored-by: default avatarmvermeulen <5479696+mvermeulen@users.noreply.github.com>
parent de10423f
......@@ -9,11 +9,12 @@ struct test_conv : verify_program<test_conv>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input =
p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
p.add_instruction(migraphx::op::convolution{}, input, weights);
mm->add_parameter("w", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
mm->add_instruction(migraphx::op::convolution{}, input, weights);
return p;
}
};
......@@ -9,11 +9,12 @@ struct test_conv2 : verify_program<test_conv2>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input =
p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 512, 28, 28}});
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 512, 28, 28}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::float_type, {256, 512, 1, 1}});
p.add_instruction(migraphx::op::convolution{{0, 0}, {1, 1}, {1, 1}}, input, weights);
mm->add_parameter("w", migraphx::shape{migraphx::shape::float_type, {256, 512, 1, 1}});
mm->add_instruction(migraphx::op::convolution{{0, 0}, {1, 1}, {1, 1}}, input, weights);
return p;
}
};
......@@ -9,11 +9,12 @@ struct test_conv3d : verify_program<test_conv3d>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input =
p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3, 3}});
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3, 3}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3, 3}});
p.add_instruction(
mm->add_parameter("w", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3, 3}});
mm->add_instruction(
migraphx::op::convolution{{0, 0, 0}, {1, 1, 1}, {1, 1, 1}}, input, weights);
return p;
}
......
......@@ -9,16 +9,17 @@ struct test_conv_add : verify_program<test_conv_add>
migraphx::program create_program() const
{
migraphx::program p;
auto x = p.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}});
auto w = p.add_literal(
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}});
auto w = mm->add_literal(
migraphx::generate_literal({migraphx::shape::float_type, {2, 8, 3, 3}}, 1));
auto y = p.add_parameter("y", {migraphx::shape::float_type, {1, 8, 4, 4}});
auto v = p.add_literal(
auto y = mm->add_parameter("y", {migraphx::shape::float_type, {1, 8, 4, 4}});
auto v = mm->add_literal(
migraphx::generate_literal({migraphx::shape::float_type, {2, 8, 3, 3}}, 2));
auto conv1 = p.add_instruction(migraphx::op::convolution{}, x, w);
auto conv2 = p.add_instruction(migraphx::op::convolution{}, y, v);
auto sum = p.add_instruction(migraphx::op::add{}, conv1, conv2);
p.add_instruction(migraphx::op::exp{}, sum);
auto conv1 = mm->add_instruction(migraphx::op::convolution{}, x, w);
auto conv2 = mm->add_instruction(migraphx::op::convolution{}, y, v);
auto sum = mm->add_instruction(migraphx::op::add{}, conv1, conv2);
mm->add_instruction(migraphx::op::exp{}, sum);
return p;
}
};
......@@ -9,16 +9,17 @@ struct test_conv_add_1x1_diff_strides : verify_program<test_conv_add_1x1_diff_st
migraphx::program create_program() const
{
migraphx::program p;
auto x = p.add_parameter("x", {migraphx::shape::float_type, {1, 8, 2, 2}});
auto w = p.add_literal(
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", {migraphx::shape::float_type, {1, 8, 2, 2}});
auto w = mm->add_literal(
migraphx::generate_literal({migraphx::shape::float_type, {2, 8, 1, 1}}, 1));
auto y = p.add_parameter("y", {migraphx::shape::float_type, {1, 8, 4, 4}});
auto v = p.add_literal(
auto y = mm->add_parameter("y", {migraphx::shape::float_type, {1, 8, 4, 4}});
auto v = mm->add_literal(
migraphx::generate_literal({migraphx::shape::float_type, {2, 8, 1, 1}}, 2));
auto conv1 = p.add_instruction(migraphx::op::convolution{}, x, w);
auto conv2 = p.add_instruction(migraphx::op::convolution{{0, 0}, {2, 2}}, y, v);
auto sum = p.add_instruction(migraphx::op::add{}, conv1, conv2);
p.add_instruction(migraphx::op::exp{}, sum);
auto conv1 = mm->add_instruction(migraphx::op::convolution{}, x, w);
auto conv2 = mm->add_instruction(migraphx::op::convolution{{0, 0}, {2, 2}}, y, v);
auto sum = mm->add_instruction(migraphx::op::add{}, conv1, conv2);
mm->add_instruction(migraphx::op::exp{}, sum);
return p;
}
};
......@@ -10,23 +10,24 @@ struct test_conv_bias_clipped_relu : verify_program<test_conv_bias_clipped_relu>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<size_t> input_lens{4, 3, 3, 3};
auto input =
p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
mm->add_parameter("w", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
auto l0 = migraphx::literal{migraphx::shape{migraphx::shape::float_type, {4}},
{2.0f, 2.0f, 2.0f, 2.0f}};
auto bias = p.add_literal(l0);
auto conv = p.add_instruction(migraphx::op::convolution{}, input, weights);
auto bias = mm->add_literal(l0);
auto conv = mm->add_instruction(migraphx::op::convolution{}, input, weights);
auto bcast_add =
p.add_instruction(migraphx::op::broadcast{1, conv->get_shape().lens()}, bias);
auto bias_add = p.add_instruction(migraphx::op::add{}, conv, bcast_add);
auto min_val = p.add_literal(0.0f);
auto max_val = p.add_literal(6.0f);
min_val = p.add_instruction(migraphx::op::multibroadcast{input_lens}, min_val);
max_val = p.add_instruction(migraphx::op::multibroadcast{input_lens}, max_val);
p.add_instruction(migraphx::op::clip{}, bias_add, min_val, max_val);
mm->add_instruction(migraphx::op::broadcast{1, conv->get_shape().lens()}, bias);
auto bias_add = mm->add_instruction(migraphx::op::add{}, conv, bcast_add);
auto min_val = mm->add_literal(0.0f);
auto max_val = mm->add_literal(6.0f);
min_val = mm->add_instruction(migraphx::op::multibroadcast{input_lens}, min_val);
max_val = mm->add_instruction(migraphx::op::multibroadcast{input_lens}, max_val);
mm->add_instruction(migraphx::op::clip{}, bias_add, min_val, max_val);
return p;
}
};
......@@ -9,18 +9,20 @@ struct test_conv_bn : verify_program<test_conv_bn>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape xs{migraphx::shape::float_type, {1, 3, 224, 224}};
migraphx::shape ws{migraphx::shape::float_type, {64, 3, 7, 7}};
migraphx::shape vars{migraphx::shape::float_type, {64}};
auto x = p.add_parameter("x", xs);
auto w = p.add_parameter("w", ws);
auto conv = p.add_instruction(migraphx::op::convolution{{3, 3}, {2, 2}, {1, 1}}, x, w);
auto scale = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 1)));
auto bias = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 2)));
auto mean = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 3)));
auto variance = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 4)));
p.add_instruction(migraphx::op::batch_norm_inference{}, conv, scale, bias, mean, variance);
auto x = mm->add_parameter("x", xs);
auto w = mm->add_parameter("w", ws);
auto conv = mm->add_instruction(migraphx::op::convolution{{3, 3}, {2, 2}, {1, 1}}, x, w);
auto scale = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 1)));
auto bias = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 2)));
auto mean = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 3)));
auto variance = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 4)));
mm->add_instruction(
migraphx::op::batch_norm_inference{}, conv, scale, bias, mean, variance);
return p;
}
};
......@@ -12,11 +12,12 @@
// std::size_t seed = 1)
// {
// migraphx::shape vars{migraphx::shape::float_type, {channels}};
// auto scale = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 1 + seed)));
// auto bias = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 2 + seed)));
// auto mean = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 3 + seed)));
// auto variance = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 4 + seed)));
// return p.add_instruction(
// auto scale = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 1 +
// seed))); auto bias = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 2
// + seed))); auto mean = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars,
// 3 + seed))); auto variance =
// mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 4 + seed))); return
// mm->add_instruction(
// migraphx::op::batch_norm_inference{}, x, scale, bias, mean, variance);
// }
......@@ -25,20 +26,20 @@
// migraphx::program p;
// std::size_t ichannels = 64;
// std::size_t ochannels = 256;
// auto x = p.add_parameter("x", {migraphx::shape::float_type, {1, ichannels, 56, 56}});
// auto w = p.add_literal(migraphx::generate_literal(
// auto x = mm->add_parameter("x", {migraphx::shape::float_type, {1, ichannels, 56,
// 56}}); auto w = mm->add_literal(migraphx::generate_literal(
// {migraphx::shape::float_type, {ochannels, ichannels, 1, 1}}, 1));
// auto y = p.add_parameter("y", {migraphx::shape::float_type, {1, ichannels, 56, 56}});
// auto v = p.add_literal(migraphx::generate_literal(
// auto y = mm->add_parameter("y", {migraphx::shape::float_type, {1, ichannels, 56,
// 56}}); auto v = mm->add_literal(migraphx::generate_literal(
// {migraphx::shape::float_type, {ochannels, ichannels, 1, 1}}, 2));
// auto relu1 = p.add_instruction(migraphx::op::relu{}, x);
// auto conv1 = p.add_instruction(migraphx::op::convolution{}, relu1, w);
// auto relu1 = mm->add_instruction(migraphx::op::relu{}, x);
// auto conv1 = mm->add_instruction(migraphx::op::convolution{}, relu1, w);
// auto bn1 = add_bn(p, conv1, ochannels, 1);
// auto relu2 = p.add_instruction(migraphx::op::relu{}, y);
// auto conv2 = p.add_instruction(migraphx::op::convolution{}, relu2, v);
// auto relu2 = mm->add_instruction(migraphx::op::relu{}, y);
// auto conv2 = mm->add_instruction(migraphx::op::convolution{}, relu2, v);
// auto bn2 = add_bn(p, conv2, ochannels, 1);
// auto sum = p.add_instruction(migraphx::op::add{}, bn1, bn2);
// p.add_instruction(migraphx::op::relu{}, sum);
// auto sum = mm->add_instruction(migraphx::op::add{}, bn1, bn2);
// mm->add_instruction(migraphx::op::relu{}, sum);
// return p;
// }
// };
......@@ -9,21 +9,22 @@ struct test_conv_bn_relu_pooling : verify_program<test_conv_bn_relu_pooling>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape xs{migraphx::shape::float_type, {1, 3, 224, 224}};
migraphx::shape ws{migraphx::shape::float_type, {64, 3, 7, 7}};
migraphx::shape vars{migraphx::shape::float_type, {64}};
auto x = p.add_parameter("x", xs);
auto w = p.add_parameter("w", ws);
auto conv = p.add_instruction(migraphx::op::convolution{{3, 3}, {2, 2}, {1, 1}}, x, w);
auto scale = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 1)));
auto bias = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 2)));
auto mean = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 3)));
auto variance = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 4)));
auto bn = p.add_instruction(
auto x = mm->add_parameter("x", xs);
auto w = mm->add_parameter("w", ws);
auto conv = mm->add_instruction(migraphx::op::convolution{{3, 3}, {2, 2}, {1, 1}}, x, w);
auto scale = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 1)));
auto bias = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 2)));
auto mean = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 3)));
auto variance = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 4)));
auto bn = mm->add_instruction(
migraphx::op::batch_norm_inference{}, conv, scale, bias, mean, variance);
auto relu = p.add_instruction(migraphx::op::relu{}, bn);
p.add_instruction(migraphx::op::pooling{"average", {1, 1}, {2, 2}, {3, 3}}, relu);
auto relu = mm->add_instruction(migraphx::op::relu{}, bn);
mm->add_instruction(migraphx::op::pooling{"average", {1, 1}, {2, 2}, {3, 3}}, relu);
return p;
}
};
......@@ -9,34 +9,36 @@ struct test_conv_bn_relu_pooling2 : verify_program<test_conv_bn_relu_pooling2>
static migraphx::instruction_ref
add_bn(migraphx::program& p, migraphx::instruction_ref x, std::size_t channels)
{
auto* mm = p.get_main_module();
migraphx::shape vars{migraphx::shape::float_type, {channels}};
auto scale = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 1 + channels)));
auto bias = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 2 + channels)));
auto mean = p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 3 + channels)));
auto scale = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 1 + channels)));
auto bias = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 2 + channels)));
auto mean = mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 3 + channels)));
auto variance =
p.add_literal(migraphx::abs(migraphx::generate_literal(vars, 4 + channels)));
return p.add_instruction(
mm->add_literal(migraphx::abs(migraphx::generate_literal(vars, 4 + channels)));
return mm->add_instruction(
migraphx::op::batch_norm_inference{}, x, scale, bias, mean, variance);
}
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape xs1{migraphx::shape::float_type, {1, 512, 7, 7}};
migraphx::shape xs2{migraphx::shape::float_type, {1, 1024, 14, 14}};
migraphx::shape ws1{migraphx::shape::float_type, {2048, 512, 1, 1}};
migraphx::shape ws2{migraphx::shape::float_type, {2048, 1024, 1, 1}};
auto x1 = p.add_parameter("x1", xs1);
auto w1 = p.add_parameter("w1", ws1);
auto conv1 = p.add_instruction(migraphx::op::convolution{{0, 0}, {1, 1}, {1, 1}}, x1, w1);
auto x1 = mm->add_parameter("x1", xs1);
auto w1 = mm->add_parameter("w1", ws1);
auto conv1 = mm->add_instruction(migraphx::op::convolution{{0, 0}, {1, 1}, {1, 1}}, x1, w1);
auto bn1 = add_bn(p, conv1, 2048);
auto x2 = p.add_parameter("x2", xs2);
auto w2 = p.add_parameter("w2", ws2);
auto conv2 = p.add_instruction(migraphx::op::convolution{{0, 0}, {2, 2}, {1, 1}}, x2, w2);
auto x2 = mm->add_parameter("x2", xs2);
auto w2 = mm->add_parameter("w2", ws2);
auto conv2 = mm->add_instruction(migraphx::op::convolution{{0, 0}, {2, 2}, {1, 1}}, x2, w2);
auto bn2 = add_bn(p, conv2, 2048);
auto add = p.add_instruction(migraphx::op::add{}, bn1, bn2);
auto relu = p.add_instruction(migraphx::op::relu{}, add);
p.add_instruction(migraphx::op::pooling{"average", {1, 1}, {2, 2}, {3, 3}}, relu);
auto add = mm->add_instruction(migraphx::op::add{}, bn1, bn2);
auto relu = mm->add_instruction(migraphx::op::relu{}, add);
mm->add_instruction(migraphx::op::pooling{"average", {1, 1}, {2, 2}, {3, 3}}, relu);
return p;
}
};
......@@ -9,13 +9,14 @@ struct test_conv_pooling : verify_program<test_conv_pooling>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input =
p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 32, 32}});
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 32, 32}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
auto conv = p.add_instruction(migraphx::op::convolution{}, input, weights);
auto pooling = p.add_instruction(migraphx::op::pooling{"max"}, conv);
p.add_instruction(migraphx::op::relu{}, pooling);
mm->add_parameter("w", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
auto conv = mm->add_instruction(migraphx::op::convolution{}, input, weights);
auto pooling = mm->add_instruction(migraphx::op::pooling{"max"}, conv);
mm->add_instruction(migraphx::op::relu{}, pooling);
return p;
}
};
......@@ -9,12 +9,13 @@ struct test_conv_relu : verify_program<test_conv_relu>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input =
p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
auto conv = p.add_instruction(migraphx::op::convolution{}, input, weights);
p.add_instruction(migraphx::op::relu{}, conv);
mm->add_parameter("w", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
auto conv = mm->add_instruction(migraphx::op::convolution{}, input, weights);
mm->add_instruction(migraphx::op::relu{}, conv);
return p;
}
};
......@@ -9,12 +9,13 @@ struct test_conv_relu_half : verify_program<test_conv_relu_half>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input =
p.add_parameter("x", migraphx::shape{migraphx::shape::half_type, {4, 3, 3, 3}});
mm->add_parameter("x", migraphx::shape{migraphx::shape::half_type, {4, 3, 3, 3}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::half_type, {4, 3, 3, 3}});
auto conv = p.add_instruction(migraphx::op::convolution{}, input, weights);
p.add_instruction(migraphx::op::relu{}, conv);
mm->add_parameter("w", migraphx::shape{migraphx::shape::half_type, {4, 3, 3, 3}});
auto conv = mm->add_instruction(migraphx::op::convolution{}, input, weights);
mm->add_instruction(migraphx::op::relu{}, conv);
return p;
}
};
......@@ -9,13 +9,14 @@ struct test_convert : verify_program<test_convert>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sa{migraphx::shape::float_type, {8, 24}};
migraphx::shape sb{migraphx::shape::float_type, {24, 6}};
auto pa = p.add_parameter("a", sa);
auto pb = p.add_parameter("b", sb);
auto ia = p.add_instruction(migraphx::op::convert{migraphx::shape::int8_type}, pa);
auto ib = p.add_instruction(migraphx::op::convert{migraphx::shape::int8_type}, pb);
p.add_instruction(migraphx::op::quant_dot{}, ia, ib);
auto pa = mm->add_parameter("a", sa);
auto pb = mm->add_parameter("b", sb);
auto ia = mm->add_instruction(migraphx::op::convert{migraphx::shape::int8_type}, pa);
auto ib = mm->add_instruction(migraphx::op::convert{migraphx::shape::int8_type}, pb);
mm->add_instruction(migraphx::op::quant_dot{}, ia, ib);
return p;
};
......
......@@ -9,9 +9,10 @@ struct test_cos : verify_program<test_cos>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::double_type, {8}};
auto x = p.add_parameter("x", s);
p.add_instruction(migraphx::op::cos{}, x);
auto x = mm->add_parameter("x", s);
mm->add_instruction(migraphx::op::cos{}, x);
return p;
}
};
......@@ -9,9 +9,10 @@ struct test_cosh : verify_program<test_cosh>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::double_type, {16}};
auto x = p.add_parameter("x", s);
p.add_instruction(migraphx::op::cosh{}, x);
auto x = mm->add_parameter("x", s);
mm->add_instruction(migraphx::op::cosh{}, x);
return p;
}
};
......@@ -9,11 +9,12 @@ struct test_deconv : verify_program<test_deconv>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input =
p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 3, 3}});
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 3, 3}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::float_type, {1, 1, 3, 3}});
p.add_instruction(migraphx::op::deconvolution{}, input, weights);
mm->add_parameter("w", migraphx::shape{migraphx::shape::float_type, {1, 1, 3, 3}});
mm->add_instruction(migraphx::op::deconvolution{}, input, weights);
return p;
}
};
......@@ -9,10 +9,12 @@ struct test_deconv_1d : verify_program<test_deconv_1d>
migraphx::program create_program() const
{
migraphx::program p;
auto input = p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 3}});
auto* mm = p.get_main_module();
auto input =
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 3}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::float_type, {1, 1, 3}});
p.add_instruction(migraphx::op::deconvolution{{0}, {1}, {1}}, input, weights);
mm->add_parameter("w", migraphx::shape{migraphx::shape::float_type, {1, 1, 3}});
mm->add_instruction(migraphx::op::deconvolution{{0}, {1}, {1}}, input, weights);
return p;
}
};
......@@ -9,11 +9,12 @@ struct test_deconv_2x3 : verify_program<test_deconv_2x3>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input =
p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 3, 6, 7}});
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 3, 6, 7}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::float_type, {3, 4, 3, 3}});
p.add_instruction(migraphx::op::deconvolution{{1, 1}, {2, 3}, {1, 1}}, input, weights);
mm->add_parameter("w", migraphx::shape{migraphx::shape::float_type, {3, 4, 3, 3}});
mm->add_instruction(migraphx::op::deconvolution{{1, 1}, {2, 3}, {1, 1}}, input, weights);
return p;
}
};
......@@ -9,11 +9,12 @@ struct test_deconv_3d : verify_program<test_deconv_3d>
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input =
p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 3, 3, 3}});
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 3, 3, 3}});
auto weights =
p.add_parameter("w", migraphx::shape{migraphx::shape::float_type, {1, 1, 3, 3, 3}});
p.add_instruction(
mm->add_parameter("w", migraphx::shape{migraphx::shape::float_type, {1, 1, 3, 3, 3}});
mm->add_instruction(
migraphx::op::deconvolution{{0, 0, 0}, {1, 1, 1}, {1, 1, 1}}, input, weights);
return p;
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment