Unverified Commit 23cb7917 authored by Brian Pickrell's avatar Brian Pickrell Committed by GitHub
Browse files

Merge branch 'develop' into blas_tuning

parents b5fcc0bc ea32ca70
......@@ -31,10 +31,15 @@
#include <migraphx/optional.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/type_name.hpp>
#include <migraphx/source_location.hpp>
#include <migraphx/config.hpp>
#include <unordered_map>
#include <unordered_set>
#ifndef MIGRAPHX_USE_TYPE_ERASED_MATCHERS
#define MIGRAPHX_USE_TYPE_ERASED_MATCHERS 0
#endif
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -103,6 +108,13 @@ struct predicate_matcher
}
};
/// Convert a predicate function into a matcher
template <class P>
predicate_matcher<P> make_predicate_matcher(P p)
{
return {p};
}
/// Convert a function into a matcher
template <class F>
struct function_matcher
......@@ -124,14 +136,14 @@ template <class M>
auto bind_match(M m, std::string name)
{
return make_function_matcher(
[=, name = std::move(name)](matcher_context& ctx,
instruction_ref ins) -> optional<instruction_ref> {
[=, m_name = std::move(name)](matcher_context& ctx,
instruction_ref ins) -> optional<instruction_ref> {
auto result = m.match(ctx, ins);
if(result)
{
if(not ctx.has_instruction(ins))
return nullopt;
ctx.instructions[name] = ins;
ctx.instructions[m_name] = ins;
}
return result;
});
......@@ -183,14 +195,26 @@ struct id_matcher
template <class M>
struct basic_matcher;
struct any_matcher;
template <class M>
basic_matcher<M> make_basic_matcher(M m);
struct type_erased_matcher
{
#if MIGRAPHX_USE_TYPE_ERASED_MATCHERS
using type = any_matcher;
#else
using type = basic_matcher<M>;
#endif
};
template <class M>
typename type_erased_matcher<M>::type make_basic_matcher(M m);
template <class F>
basic_matcher<function_matcher<F>> make_basic_fun_matcher(F f);
auto make_basic_fun_matcher(F f);
template <class P>
basic_matcher<predicate_matcher<P>> make_basic_pred_matcher(P p);
auto make_basic_pred_matcher(P p);
/// The basic matcher provides the all_of composability of the matcher
template <class M>
......@@ -222,38 +246,38 @@ struct basic_matcher
auto match(matcher_context& ctx, instruction_ref ins) const { return m.match(ctx, ins); }
};
/// Create a typed-erased matcher
using any_matcher_base = basic_matcher<
function_matcher<std::function<optional<instruction_ref>(matcher_context&, instruction_ref)>>>;
struct any_matcher : any_matcher_base
{
template <class M>
any_matcher(M mm) : any_matcher_base({[=](auto& ctx, auto ins) { return mm.match(ctx, ins); }})
{
}
};
/// Create a basic matcher from a matcher
template <class M>
basic_matcher<M> make_basic_matcher(M m)
typename type_erased_matcher<M>::type make_basic_matcher(M m)
{
return {m};
}
/// Create a basic matcher from a function
template <class F>
basic_matcher<function_matcher<F>> make_basic_fun_matcher(F f)
auto make_basic_fun_matcher(F f)
{
return {{f}};
return make_basic_matcher(make_function_matcher(f));
}
/// Create a basic matcher from a predicate function
template <class P>
basic_matcher<predicate_matcher<P>> make_basic_pred_matcher(P p)
auto make_basic_pred_matcher(P p)
{
return {{p}};
return make_basic_matcher(make_predicate_matcher(p));
}
/// Create a typed-erased matcher
using any_matcher_base = basic_matcher<
function_matcher<std::function<optional<instruction_ref>(matcher_context&, instruction_ref)>>>;
struct any_matcher : any_matcher_base
{
template <class M>
any_matcher(M mm) : any_matcher_base({[=](auto& ctx, auto ins) { return mm.match(ctx, ins); }})
{
}
};
/// This macro takes care of the boilerplate for defining a matcher
#define MIGRAPHX_BASIC_MATCHER(name, ...) \
struct name##_m \
......@@ -347,31 +371,30 @@ match::matcher_result find_match(module& modl, M&& m)
}
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_MATCHES)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_MATCHES_FOR)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_VALIDATE_MATCHES)
/// Find matches for an instruction in the module
/// Find matches for an instruction in the module for per section of matchers
template <class Mod, class... Ms>
void find_matches(Mod& mod, instruction_ref ins, Ms&&... ms)
{
#if !defined(__GNUC__) || defined(__clang__) || __GNUC__ > 5
const
#endif
int trace = value_of(MIGRAPHX_TRACE_MATCHES{});
#if !defined(__GNUC__) || defined(__clang__) || __GNUC__ > 5
const
#endif
bool validate = enabled(MIGRAPHX_VALIDATE_MATCHES{});
bool match = false;
void find_matches_for(source_location location, Mod& mod, instruction_ref ins, Ms&&... ms)
{
const int trace = value_of(MIGRAPHX_TRACE_MATCHES{});
const bool validate = enabled(MIGRAPHX_VALIDATE_MATCHES{});
const auto trace_filter = string_value_of(MIGRAPHX_TRACE_MATCHES_FOR{});
const bool trace_for = not trace_filter.empty() and
(contains(std::string{location.file_name()}, trace_filter) or
contains(std::string{location.function_name()}, trace_filter));
bool match = false;
each_args(
[&](auto&& m) {
if(match)
return;
if(trace > 1)
if(trace > 1 or trace_for)
std::cout << "Match: " << get_type_name(m) << std::endl;
auto r = match_instruction(get_module(mod), ins, m.matcher());
if(r.result == get_module(mod).end())
return;
if(trace > 0)
if(trace > 0 or trace_for)
{
std::cout << "Matched by " << get_type_name(m) << std::endl;
get_module(mod).debug_print(ins);
......@@ -397,13 +420,19 @@ void find_matches(Mod& mod, instruction_ref ins, Ms&&... ms)
/// Find matches in a module
template <class Mod, class... Ms>
void find_matches(Mod& mod, Ms&&... ms)
struct find_matches
{
for(auto ins : iterator_for(get_module(mod)))
find_matches(Mod& mod, Ms&&... ms, source_location location = source_location::current())
{
find_matches(mod, ins, ms...);
for(auto ins : iterator_for(get_module(mod)))
{
find_matches_for(location, mod, ins, ms...);
}
}
}
};
template <class Mod, class... Ms>
find_matches(Mod& mod, Ms&&... ms) -> find_matches<Mod, Ms...>;
template <class M, class F>
struct find_generic_match
......@@ -632,9 +661,9 @@ auto skip_output(Ms... ms)
inline auto var(std::string s)
{
return make_basic_fun_matcher(
[=, s = std::move(s)](const matcher_context& ctx,
instruction_ref) -> optional<instruction_ref> {
auto it = ctx.instructions.find(s);
[=, m_s = std::move(s)](const matcher_context& ctx,
instruction_ref) -> optional<instruction_ref> {
auto it = ctx.instructions.find(m_s);
if(it == ctx.instructions.end())
return nullopt;
return it->second;
......@@ -644,7 +673,7 @@ inline auto var(std::string s)
inline auto name(std::string s)
{
return make_basic_pred_matcher(
[=, s = std::move(s)](instruction_ref ins) { return ins->name() == s; });
[=, m_s = std::move(s)](instruction_ref ins) { return ins->name() == m_s; });
}
inline auto name_contains(const std::string& name)
......@@ -655,8 +684,8 @@ inline auto name_contains(const std::string& name)
inline auto name(std::unordered_set<std::string> names)
{
return make_basic_pred_matcher([=, names = std::move(names)](instruction_ref ins) {
return names.count(ins->name()) > 0;
return make_basic_pred_matcher([=, m_names = std::move(names)](instruction_ref ins) {
return m_names.count(ins->name()) > 0;
});
}
......
......@@ -36,7 +36,7 @@ struct module;
* Remove multiple memory allocations using graph coloring to find memory allocations that can be
* reused.
*/
struct memory_coloring
struct MIGRAPHX_EXPORT memory_coloring
{
std::string allocation_op{};
bool verify = false;
......
......@@ -52,7 +52,7 @@ using ins_dep_map = std::unordered_map<instruction_ref, std::unordered_set<ins
/**
* @brief Stores the instruction stream
*/
struct module
struct MIGRAPHX_EXPORT module
{
module(const std::string& name = "");
......@@ -189,7 +189,7 @@ struct module
instruction_ref validate() const;
instruction_ref find_dangling_reference() const;
void finalize(context& ctx);
void finalize(std::vector<context>& contexts);
void debug_print() const;
void debug_print(instruction_ref ins) const;
......@@ -222,11 +222,21 @@ struct module
void annotate(std::ostream& os, std::function<void(instruction_ref)> a) const;
std::vector<module_ref> get_sub_modules(bool shallow = false) const;
/* sorts the module in topological order aka reverse-post order (RPO) DFS order
it takes last instruction or @return as the root and walks back the graph and moves inputs
of the each instruction such that it appears before the instruction itself.
*/
module& sort();
/* Any instruction "X" can have module arguments and those modules inside them can use any other
* instruction "Y" from predecessor modules of the instruction "X". Such instruction "Y" inside
* module args are not listed as input instructions to "X". But those instructions "Y" must be
* evaluted before the instruction "X" can. Therefore such "Y" instructions are considered
* implicit dependency to "X".
*/
ins_dep_map calc_implicit_deps() const;
friend std::ostream& operator<<(std::ostream& os, const module& m);
friend bool operator==(const module& x, const module& y);
MIGRAPHX_EXPORT friend std::ostream& operator<<(std::ostream& os, const module& m);
MIGRAPHX_EXPORT friend bool operator==(const module& x, const module& y);
friend bool operator!=(const module& x, const module& y) { return not(x == y); }
private:
......
......@@ -31,10 +31,11 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void to_msgpack(const value& v, std::function<void(const char*, std::size_t)> writer);
std::vector<char> to_msgpack(const value& v);
value from_msgpack(const std::vector<char>& buffer);
value from_msgpack(const char* buffer, std::size_t size);
MIGRAPHX_EXPORT void to_msgpack(const value& v,
std::function<void(const char*, std::size_t)> writer);
MIGRAPHX_EXPORT std::vector<char> to_msgpack(const value& v);
MIGRAPHX_EXPORT value from_msgpack(const std::vector<char>& buffer);
MIGRAPHX_EXPORT value from_msgpack(const char* buffer, std::size_t size);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -42,7 +42,8 @@ struct select_dependent_type
template <class T, class... Ts>
using dependent_type = typename select_dependent_type<T, Ts...>::type;
bool normalize_attributes(operation& op, const std::vector<std::size_t>& lens);
MIGRAPHX_EXPORT
bool normalize_attributes(operation& op, const shape& input_shape);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -39,7 +39,7 @@ struct module;
* Process negative axis attributes of ops
*/
struct normalize_ops
struct MIGRAPHX_EXPORT normalize_ops
{
std::string name() const { return "normalize_ops"; }
void apply(module& m) const;
......
......@@ -26,6 +26,7 @@
#include <migraphx/program.hpp>
#include <migraphx/config.hpp>
#include <migraphx/onnx/export.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -54,15 +55,19 @@ struct onnx_options
};
/// Create a program from an onnx file
program parse_onnx(const std::string& name, const onnx_options& = onnx_options{});
MIGRAPHX_ONNX_EXPORT program parse_onnx(const std::string& name,
const onnx_options& = onnx_options{});
/// Create a program from an onnx buffer
program parse_onnx_buffer(const std::string& buffer, const onnx_options& options);
MIGRAPHX_ONNX_EXPORT program parse_onnx_buffer(const std::string& buffer,
const onnx_options& options);
/// Create a program from an onnx buffer
program parse_onnx_buffer(const void* data, std::size_t size, const onnx_options& options);
MIGRAPHX_ONNX_EXPORT program parse_onnx_buffer(const void* data,
std::size_t size,
const onnx_options& options);
std::vector<std::string> get_onnx_operators();
MIGRAPHX_ONNX_EXPORT std::vector<std::string> get_onnx_operators();
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -37,10 +37,13 @@ namespace op {
* 1 input version:
* Broadcasts a tensor from the original shape to the broadcast_lens by setting the stride of
* broadcasted dimensions to zero. `axis` attribute for a 1D input shape is the output dimension
* that stays the same. ex: broadcasting shape [1024] -> [4, 1024, 3] has axis = 1 For higher rank
* input shapes, axis is an offset parameter for the broadcasting. Such that this operator would
* work in the opposite direction of NumPy broadcasting. ex: broadcasting shape [2, 2] -> [2, 2, 3]
* with axis = 0
* that stays the same.
* ex: broadcasting shape [1024] -> [4, 1024, 3] has axis = 1.
*
* For higher rank input shapes, axis is an offset parameter for the broadcasting.
* Such that this operator would work in the opposite direction of NumPy broadcasting
* (left-most to rightwards element-wise comparison)
* ex: broadcasting shape [2, 2] -> [2, 2, 3] with axis = 0
*
* 2 input version:
* Broadcast the first input 1D shape into the second input shape based on the axis parameter.
......@@ -68,6 +71,9 @@ struct broadcast
{
// the ONNX broadcast op is deprecated now, so not handling the negative
// value of axis anymore
if(s0.dynamic())
MIGRAPHX_THROW(
"BROADCAST: Single dynamic input shape not supported. Use two inputs.");
if(axis >= broadcast_lens.size())
{
MIGRAPHX_THROW("BROADCAST : axis " + migraphx::to_string(axis) +
......
......@@ -25,12 +25,13 @@
#define MIGRAPHX_GUARD_OPERATORS_CLIP_HPP
#include <array>
#include <cmath>
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <cmath>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -48,15 +49,15 @@ struct clip
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(3).same_type().same_dims();
check_shapes{inputs, *this, true}.has(3).same_type().same_dims();
return inputs.front();
}
argument compute(const shape& output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
argument result{dyn_out.computed_shape};
visit_all(result, args[0], args[1], args[2])([&](auto output, auto x, auto min, auto max) {
par_for(output_shape.elements(),
par_for(dyn_out.computed_shape.elements(),
[&](auto i) { output[i] = std::min(std::max(min[i], x[i]), max[i]); });
});
......
......@@ -59,8 +59,8 @@ enum class rnn_direction
bidirectional,
};
std::ostream& operator<<(std::ostream& os, pooling_mode v);
std::ostream& operator<<(std::ostream& os, rnn_direction v);
MIGRAPHX_EXPORT std::ostream& operator<<(std::ostream& os, pooling_mode v);
MIGRAPHX_EXPORT std::ostream& operator<<(std::ostream& os, rnn_direction v);
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
......
......@@ -66,7 +66,19 @@ struct convert : unary<convert>
auto type = target_type;
return [type](auto x) {
auto y = x;
shape::visit(type, [&](auto as) { y = std::min(std::max(as(x), as.min()), as.max()); });
shape::visit(type, [&](auto as) {
// clamping value between target_type's max and min doesn't work for NaNs,
if(std::isnan(x))
{
y = as.nan();
}
else
{
// clamp overflowing/underflowing values to min()/max() instead of +/-infinity
// during downcasting
y = std::min(std::max(as(x), as.min()), as.max());
}
});
return y;
};
}
......
......@@ -79,17 +79,17 @@ struct convolution
check_shapes{inputs, *this, true}.has(2).same_type().same_ndims().min_ndims(3);
check_attribute_size();
// num of dims of input and attribute should match
const auto input_size = inputs[0].max_lens().size();
const auto input_ndim = inputs[0].ndim();
const auto padding_size = padding.size();
if(input_size != padding_size / 2 + 2 && input_size != padding_size + 2)
if(input_ndim != padding_size / 2 + 2 and input_ndim != padding_size + 2)
{
MIGRAPHX_THROW("CONVOLUTION: input and attribute size mismatch!");
}
const shape& x_shape = inputs.at(0);
const shape& w_shape = inputs.at(1);
const size_t num_spatial_dims = input_size - 2;
const size_t num_spatial_dims = input_ndim - 2;
if(num_spatial_dims != this->kdims())
{
MIGRAPHX_THROW("CONVOLUTION: input k-dims does not match attribute size");
......@@ -105,7 +105,7 @@ struct convolution
}
else
{
return fixed_compute_shape(x_shape, w_shape);
return static_compute_shape(x_shape, w_shape);
}
}
......@@ -143,23 +143,10 @@ struct convolution
shape dynamic_compute_shape(shape x_shape, shape w_shape) const
{
std::vector<shape::dynamic_dimension> output_dyn_dims = {};
output_dyn_dims.push_back(x_shape.to_dynamic().dyn_dims().at(0));
output_dyn_dims.push_back(w_shape.to_dynamic().dyn_dims().at(0));
auto dynamic_shape_push_back = [&](const shape& input_shape) {
if(input_shape.dynamic())
{
output_dyn_dims.push_back(input_shape.dyn_dims().at(0));
}
else
{
auto l = input_shape.lens().at(0);
output_dyn_dims.push_back({l, l});
}
};
dynamic_shape_push_back(x_shape);
dynamic_shape_push_back(w_shape);
const size_t num_spatial_dims = x_shape.max_lens().size() - 2;
const size_t num_spatial_dims = x_shape.ndim() - 2;
if(padding_mode != default_)
{
for(std::size_t i = 0; i < num_spatial_dims; ++i)
......@@ -198,7 +185,7 @@ struct convolution
return shape{x_shape.type(), output_dyn_dims};
}
shape fixed_compute_shape(shape x_shape, shape w_shape) const
shape static_compute_shape(shape x_shape, shape w_shape) const
{
std::vector<size_t> output_lens{x_shape.lens()[0], w_shape.lens()[0]};
auto spatial_lens = calc_conv_lens(x_shape.lens(), w_shape.lens());
......
......@@ -21,9 +21,11 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_DECONVOLUTION_HPP
#define MIGRAPHX_GUARD_OPERATORS_DECONVOLUTION_HPP
#ifndef MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_BACKWARDS_HPP
#define MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_BACKWARDS_HPP
#include <cmath>
#include <utility>
#include <migraphx/op/common.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
......@@ -31,14 +33,13 @@
#include <migraphx/argument.hpp>
#include <migraphx/par_dfor.hpp>
#include <migraphx/shape_for_each.hpp>
#include <cmath>
#include <utility>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct deconvolution
struct convolution_backwards
{
std::vector<std::size_t> padding = {0, 0};
std::vector<std::size_t> stride = {1, 1};
......@@ -57,45 +58,91 @@ struct deconvolution
f(self.group, "group"));
}
std::string name() const { return "deconvolution"; }
std::string name() const { return "convolution_backwards"; }
void check_attribute_size() const
{
if((padding.size() != stride.size() and (padding.size() / 2) != stride.size()) or
stride.size() != dilation.size())
if(padding.size() != stride.size() or stride.size() != dilation.size())
{
MIGRAPHX_THROW("deconvolution: inconsistent attribute sizes");
MIGRAPHX_THROW("CONVOLUTION_BACKWARDS: inconsistent attribute sizes");
}
}
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(2).same_type().same_ndims().min_ndims(3);
check_shapes{inputs, *this, true}.has(2).same_type().same_ndims().min_ndims(3);
const shape& input = inputs.at(0);
const shape& weights = inputs.at(1);
size_t kdims = input.lens().size() - 2;
if(kdims != this->kdims())
const shape& x_shape = inputs.at(0);
const shape& w_shape = inputs.at(1);
if(x_shape.ndim() - 2 != this->kdims())
{
MIGRAPHX_THROW("deconvolution: input k-dims does not match attribute size");
MIGRAPHX_THROW("CONVOLUTION_BACKWARDS: input k-dims does not match attribute size");
}
std::vector<size_t> output_lens{input.lens()[0], weights.lens()[1]};
if(not x_shape.dynamic() and not w_shape.dynamic() and
x_shape.lens().at(1) != (w_shape.lens().at(0) * group))
{
MIGRAPHX_THROW("CONVOLUTION_BACKWARDS: mismatched channel numbers");
}
for(size_t i = 0; i < kdims; i++)
if(x_shape.dynamic() or w_shape.dynamic())
{
output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
return dynamic_compute_shape(x_shape, w_shape);
}
else
{
return static_compute_shape(x_shape, w_shape);
}
}
std::vector<std::size_t> calc_spatial_lens(std::vector<std::size_t> x_lens,
std::vector<std::size_t> w_lens) const
{
std::vector<size_t> spatial_lens(x_lens.size() - 2);
// stride * (input - 1) + output_padding + ((kernel - 1) * dilation + 1) - padding_L -
// padding_R. This assumes padding_L = padding_R and output_padding handled in parser.
for(size_t i = 0; i < spatial_lens.size(); i++)
{
spatial_lens.at(i) = (std::size_t(std::max<std::ptrdiff_t>(
1,
stride[i] * (input.lens()[i + 2] - 1) +
((weights.lens()[i + 2] - 1) * dilation[i] + 1) - 2 * padding[i])));
stride[i] * (x_lens[i + 2] - 1) + ((w_lens[i + 2] - 1) * dilation[i] + 1) -
2 * padding[i])));
}
return inputs[0].with_lens(output_lens);
return spatial_lens;
}
shape dynamic_compute_shape(shape x_shape, shape w_shape) const
{
std::vector<shape::dynamic_dimension> output_dyn_dims = {};
output_dyn_dims.push_back(x_shape.to_dynamic().dyn_dims().at(0));
output_dyn_dims.push_back(w_shape.to_dynamic().dyn_dims().at(1));
const std::size_t num_spatial_dims = x_shape.ndim() - 2;
// Does not compute for optimals
auto min_spatial_dims = calc_spatial_lens(x_shape.min_lens(), w_shape.min_lens());
auto max_spatial_dims = calc_spatial_lens(x_shape.max_lens(), w_shape.max_lens());
for(size_t i = 0; i < num_spatial_dims; ++i)
{
output_dyn_dims.push_back(
shape::dynamic_dimension{min_spatial_dims[i], max_spatial_dims[i], {}});
}
return shape{x_shape.type(), output_dyn_dims};
}
shape static_compute_shape(shape x_shape, shape w_shape) const
{
std::vector<size_t> output_lens{x_shape.lens()[0], w_shape.lens()[1]};
auto spatial_lens = calc_spatial_lens(x_shape.lens(), w_shape.lens());
std::for_each(spatial_lens.begin(), spatial_lens.end(), [&output_lens](auto x) {
output_lens.push_back(x);
});
return x_shape.with_lens(output_lens);
}
argument compute(shape output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
auto kdims = this->kdims();
argument result{dyn_out.computed_shape};
auto num_spatial_dims = this->kdims();
visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
using type = typename decltype(output)::value_type;
......@@ -109,22 +156,22 @@ struct deconvolution
auto wei_n = wei[0];
auto wei_c = wei[1];
auto out_lens = output_shape.lens();
auto out_lens = dyn_out.computed_shape.lens();
std::vector<std::size_t> win_size{in_c};
std::copy(in_lens.begin() + 2, in_lens.end(), std::back_inserter(win_size));
std::copy(wei.begin() + 2, wei.end(), std::back_inserter(win_size));
shape win_shape{output_shape.type(), win_size};
shape win_shape{dyn_out.computed_shape.type(), win_size};
par_dfor(in_n, wei_c)([&](int o, int k) {
shape_for_each(win_shape, [&](auto idx_win) {
const int w = idx_win[0];
auto input_dims_start = idx_win.begin() + 1;
auto wei_dims_start = idx_win.begin() + kdims + 1;
auto wei_dims_start = idx_win.begin() + num_spatial_dims + 1;
std::vector<std::ptrdiff_t> win_start;
for(std::size_t n = 0; n < kdims; ++n)
for(std::size_t n = 0; n < num_spatial_dims; ++n)
{
win_start.push_back(std::ptrdiff_t(*(input_dims_start + n) * stride[n]) -
std::ptrdiff_t(padding[n]));
......@@ -135,7 +182,7 @@ struct deconvolution
std::vector<std::ptrdiff_t> idx_out{o, in_ch};
for(size_t n = 0; n < kdims; n++)
for(size_t n = 0; n < num_spatial_dims; n++)
{
idx_out.push_back(win_start[n] + *(wei_dims_start + n) * dilation[n]);
}
......
......@@ -37,6 +37,15 @@ namespace op {
struct dequantizelinear
{
value attributes() const
{
// Note: point_op attribute is not used in this op. Instead, in
// gpu compilation pipeline, rewrite_quantization will be invoked
// from generate_pointwise() to rewrite this op.
return {{"pointwise", true}};
}
std::string name() const { return "dequantizelinear"; }
shape compute_shape(std::vector<shape> inputs) const
{
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_DIMENSIONS_OF_HPP
#define MIGRAPHX_GUARD_OPERATORS_DIMENSIONS_OF_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Returns the dimensions of the input argument from starting axis to ending axis.
* Atleast `end` must be set to use this operator (set `end` to ndim for default ONNX behavior of
* `Shape` operator) This should only be used for dynamic shapes as this can be simplified to a
* literal for static shapes.
*/
struct dimensions_of
{
std::size_t start = 0;
std::size_t end = 0;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.start, "start"), f(self.end, "end"));
}
std::string name() const { return "dimensions_of"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this, true}.has(1);
if(start >= end)
{
MIGRAPHX_THROW("DIMENSIONS_OF: start >= end. start = " + std::to_string(start) +
", end = " + std::to_string(end));
}
return shape{shape::int64_type, {end - start}};
}
argument compute(const shape& output_shape, std::vector<argument> args) const
{
argument result{output_shape};
auto input_lens = args[0].get_shape().lens();
result.visit([&](auto output) {
std::copy(input_lens.cbegin() + start, input_lens.cbegin() + end, output.begin());
});
return result;
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -71,7 +71,7 @@ struct if_op
std::unordered_map<std::string, argument> params;
std::set<std::string> pnames;
for(const auto& smod : mods)
for(const_module_ref smod : mods)
{
auto names = smod->get_parameter_names();
pnames.insert(names.begin(), names.end());
......
......@@ -59,9 +59,9 @@ struct loop
MIGRAPHX_THROW("LOOP: operator should have one submodule.");
}
const auto& mod = mods.front();
auto mod_out_shapes = mod->get_output_shapes();
auto dep_param_num = inputs.size() - 2;
const_module_ref mod = mods.front();
auto mod_out_shapes = mod->get_output_shapes();
auto dep_param_num = inputs.size() - 2;
// first item of the mod output shapes is condition used in loop,
// which is not needed to compute output shape
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -36,9 +36,9 @@ namespace op {
/**
* Broadcast multiple dimensions between two tensors.
* Two versions of this operator: one input and two inputs.
* Two versions of this operator: 1 input and 2+ inputs.
* One input version uses output_lens attribute and broadcasts to it.
* Two inputs version broadcasts both inputs to the common shape at evaluation time.
* 2+ inputs version broadcasts first input to the common shape at evaluation time.
*/
struct multibroadcast
{
......@@ -57,19 +57,19 @@ struct multibroadcast
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this, true}.has(1, 2);
check_shapes{inputs, *this, true}.has_at_least(1);
auto t = inputs.at(0).type();
auto s0 = inputs.at(0);
if(s0.max_lens().empty())
if(s0.ndim() < 1)
{
MIGRAPHX_THROW("MULTIBROADCAST: input dimensions should be > 0");
}
auto make_bcast_strides = [&](std::vector<std::size_t> bcast_lens, std::size_t offset) {
std::vector<size_t> bcast_strides(bcast_lens.size(), 0);
for(std::ptrdiff_t i = s0.lens().size() - 1; i >= 0; i--)
for(std::ptrdiff_t i = s0.ndim() - 1; i >= 0; i--)
{
if(bcast_lens[i + offset] == s0.lens()[i])
{
......@@ -81,13 +81,16 @@ struct multibroadcast
if(inputs.size() == 1)
{
if(s0.lens().size() > output_lens.size())
if(s0.dynamic())
MIGRAPHX_THROW(
"MULTIBROADCAST: Single dynamic input shape not supported. Use two inputs.");
if(s0.ndim() > output_lens.size())
{
MIGRAPHX_THROW("MULTIBROADCAST: input dimensions should <= output size");
}
auto offset = output_lens.size() - s0.lens().size();
for(std::ptrdiff_t i = s0.lens().size() - 1; i >= 0; i--)
auto offset = output_lens.size() - s0.ndim();
for(std::ptrdiff_t i = s0.ndim() - 1; i >= 0; i--)
{
if(output_lens[i + offset] != s0.lens()[i] and s0.lens()[i] != 1)
{
......@@ -102,20 +105,21 @@ struct multibroadcast
}
else
{
// two inputs
auto s1 = inputs.at(1);
if(s0.dynamic() or s1.dynamic())
// 2+ inputs
if(std::any_of(
inputs.cbegin(), inputs.cend(), [](auto input) { return input.dynamic(); }))
{
if(not output_dyn_dims.empty())
{
return {t, output_dyn_dims};
}
return {t, compute_broadcasted_dyn_dims(s0, s1)};
return {t, compute_common_dyn_dims(inputs)};
}
else
{
auto bcast_lens = compute_broadcasted_lens(s0.lens(), s1.lens());
auto offset = bcast_lens.size() - s0.lens().size();
// output_lens will not be set for 2+ input version
auto bcast_lens = compute_common_lens(inputs);
auto offset = bcast_lens.size() - s0.ndim();
auto bcast_strides = make_bcast_strides(bcast_lens, offset);
return {t, std::move(bcast_lens), std::move(bcast_strides)};
}
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -42,16 +42,43 @@ namespace op {
struct pooling
{
pooling_mode mode = {pooling_mode::average};
pooling_mode mode = {pooling_mode::average};
// Padding along each spatial input dimension
// Can be ndim or 2*ndim values where ndim is size of lengths
// ndim values means pad the same before and after each dimension
// 2*ndim values contains n pre and then n post padding values
std::vector<std::size_t> padding = {0, 0};
std::vector<std::size_t> stride = {1, 1};
// Size of stride to take from one placement of the pooling kernel to the next.
// This is distinct from the strides used by the shape class. Must be the same
// ndim as lengths.
std::vector<std::size_t> stride = {1, 1};
// Spatial dimensions of the pooling kernel or window,
// 2 smaller than the input tensor rank (NCHW layout)
std::vector<std::size_t> lengths = {1, 1};
bool ceil_mode = false;
int lp_order = 2;
// Dilations are not supported at this time.
// ceiling mode is a flag affecting output size
// or equivalently, placements of the pooling kernel.
// When true, round the size upwards, possibly
// including partial placements where the kernel extends beyond the edge
// of input and even padding. When false, round down so that all
// kernel placements fit but some input values may be dropped.
bool ceil_mode = false;
int lp_order = 2;
// Global pooling with dynamic shape input
bool dyn_global = false;
// an attribute of the Onnx pooling operator, not currently enabled here because MIOpen can't
// support it. We currently implement padding for average pooling by inserting a Padding
// operator during Onnx parsing. But to support dynamic shape inputs and count_include_pad
// together, it would be necessary to do this calculation at runtime in MIOpen.
bool count_include_pad = false;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
......@@ -68,11 +95,29 @@ struct pooling
void check_attribute_size() const
{
if((padding.size() != stride.size() and (padding.size() / 2) != stride.size()) or
(not dyn_global and stride.size() != lengths.size()))
if(dyn_global)
return;
if((padding.size() != stride.size() and (padding.size()) != stride.size() * 2) or
stride.size() != lengths.size())
{
MIGRAPHX_THROW("POOLING: inconsistent attribute sizes");
}
if(std::any_of(lengths.begin(), lengths.end(), [&](auto i) { return (i == 0); }) or
std::any_of(stride.begin(), stride.end(), [&](auto i) { return (i == 0); }))
{
MIGRAPHX_THROW("POOLING: size 0 pooling kernel or stride");
}
// TODO: update lowering to run the reference
// code when OneDNN can't execute pooling for a CPU
// OneDNN has a limitation on padding size for pooling. see
// https://oneapi-src.github.io/oneDNN/dev_guide_convolution.html#doxid-dev-guide-convolution
// padding = {2}; stride = {1}; lengths = {3} succeeds in oneDNN but
// padding = {2}; stride = {1}; lengths = {2} fails.
// Also, the referenced documentation contains a max. dimension size of 14 for the kernel
// ("weights tensor") that MIGraphX doesn't enforce.
}
size_t kdims() const
......@@ -112,7 +157,11 @@ struct pooling
const shape& input = inputs.at(0);
auto padding_size = padding.size();
size_t kdims = input.ndim() - 2;
if(input.ndim() != padding_size / 2 + 2 and input.ndim() != padding_size + 2)
if(input.ndim() < 3)
{
MIGRAPHX_THROW("POOLING: input must have 3 or more dimensions and be nonempty");
}
if(input.ndim() * 2 != padding_size + 4 and input.ndim() != padding_size + 2)
{
MIGRAPHX_THROW("POOLING: input and attribute size mismatch!");
}
......@@ -132,7 +181,7 @@ struct pooling
}
else
{
// does not compute for optimals
// does not compute optimals
auto min_spatial_dims = calc_spatial_dim_out(input.min_lens(), kdims);
auto max_spatial_dims = calc_spatial_dim_out(input.max_lens(), kdims);
for(size_t i = 0; i < kdims; ++i)
......@@ -149,7 +198,7 @@ struct pooling
std::vector<std::size_t> output_lens(input_lens.begin(), input_lens.begin() + 2);
// Used for when normalize_compute_shape() is called again at model eval time
// for an originally dynamic shape. Since kernel shape is not used with dyn_global.
// for an originally dynamic shape. Kernel shape is not used with dyn_global.
if(dyn_global)
{
for(size_t i = 0; i < kdims; ++i)
......@@ -184,7 +233,7 @@ struct pooling
double operator()(double x, double y) const { return x + std::pow(std::abs(y), p); }
double final(double x, std::size_t) const { return std::pow(x, 1. / p); }
double final(double x, std::size_t) const { return (p == 0) ? 1 : std::pow(x, 1. / p); }
};
struct avg_pool
......@@ -222,37 +271,82 @@ struct pooling
{
auto in_s = input.get_shape();
auto in_lens = in_s.lens();
// For each element of output; i.e., for each placement of pooling kernel...
par_for(output_shape.elements(), [&](auto i) {
auto idx_o = output_shape.multi(i);
auto n_dim = idx_o.size();
std::vector<std::size_t> win_start;
// starting offset of the pooling window
std::vector<int> win_start;
std::vector<std::size_t> win_size;
// For each spatial dimension, find starting and ending index of pooling kernel
for(std::size_t dim = 2; dim < n_dim; ++dim)
{
auto d_2 = dim - 2;
int start =
static_cast<int>(idx_o[dim] * stride[d_2]) - static_cast<int>(padding[d_2]);
int end = std::min(start + kernel_dims[d_2], in_lens[dim]);
start = std::max(start, 0);
int end;
// NOLINT
if(count_include_pad and ceil_mode and (mode != pooling_mode::max))
{
// TODO: this block can't execute until we enable count_include_pad
// Even when using padding, if in ceil_mode a window
// could extend beyond the end of both input and
// padding. Clip out-of-bounds indexes but not padding.
// Check if this kernel extends beyond the padding at end of dimension
end = std::min(start + kernel_dims[d_2],
in_lens[dim] + static_cast<int>(padding[d_2]));
}
else
{
// In non-ceiling mode, when
// count_include_pad is false, or for max pooling, clip off padding.
end = std::min(start + kernel_dims[d_2], in_lens[dim]);
start = std::max(start, 0);
}
win_start.push_back(start);
if(end < start)
{
// This error can be caused by misc. bad input combinations
MIGRAPHX_THROW("POOLING: invalid attributes");
}
win_size.push_back(end - start);
}
shape win_shape{output_shape.type(), win_size};
auto pool_size = win_shape.elements();
double output_val = op.template init<Type>();
// for each element in the window...
shape_for_each(win_shape, [&](auto idx_w) {
// the coordinates of this element
auto idx = idx_o;
// Add the kernel location idx_w and the offset win_start, for each dimension.
// Negative results are cast to very large unsigned integers.
std::transform(idx_w.begin(),
idx_w.end(),
win_start.begin(),
idx.begin() + 2,
[](auto ii, auto jj) { return ii + jj; });
if(std::all_of(idx.begin() + 2, idx.end(), [&](auto ii) { return ii >= 0; }) and
idx < in_lens)
// Check if any of coordinates are out of input tensor's range
if(std::mismatch(idx.begin() + 2,
idx.end(),
in_lens.begin() + 2,
in_lens.end(),
std::less<>{}) == std::make_pair(idx.end(), in_lens.end()))
{
output_val = op(output_val, input[in_s.index(idx)]);
}
else
{
// this is a padding element. Padding locations
// don't contribute to average or max pooling total but can play in
// lpnorm pooling.
output_val = op(output_val, 0);
}
});
output[i] = Type(op.final(output_val, pool_size));
});
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP
#define MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP
......@@ -37,6 +38,12 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Parent struct for prefix scan operations. A prefix scan is equivalent to the C++
* std::exclusive_scan or std::inclusive_scan. Given a list of numbers, a prefix scan
* sum op returns an equal size list of running totals of the values. Other operations
* besides addition can be supported by their own child ops.
*/
template <class Derived>
struct prefix_scan_op : op_name<Derived>
{
......@@ -60,9 +67,13 @@ struct prefix_scan_op : op_name<Derived>
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
check_shapes{inputs, *this, true}.has(1);
auto s = inputs.front();
if(s.broadcasted())
if(s.dynamic())
{
return s;
}
else if(s.broadcasted())
{
return {s.type(), s.lens()};
}
......@@ -72,8 +83,9 @@ struct prefix_scan_op : op_name<Derived>
}
}
argument compute(const shape& output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
shape output_shape(dyn_out.computed_shape);
argument result{output_shape};
auto s = args[0].get_shape();
if(s == output_shape)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment