Unverified Commit 23cb7917 authored by Brian Pickrell's avatar Brian Pickrell Committed by GitHub
Browse files

Merge branch 'develop' into blas_tuning

parents b5fcc0bc ea32ca70
......@@ -44,7 +44,7 @@ namespace migraphx {
extern "C" {
__global__ void gathernd_kernel(void* in_data, void* in_indices, void* output)
MIGRAPHX_GLOBAL void gathernd_kernel(void* in_data, void* in_indices, void* output)
{
make_tensors()(in_data, in_indices, output)([](auto&&... xs) {
auto settings = make_gathernd_settings(MIGRAPHX_MAKE_CONSTANT(int64_t{BATCH_DIMS}));
......@@ -82,7 +82,7 @@ struct gathernd_compiler : compiler<gathernd_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
return compile_op(ctx, to_shapes(ins->inputs()), op.to_value());
}
};
......
......@@ -48,7 +48,7 @@ namespace migraphx {
${preamble}
extern "C" {
__global__ void ${kernel}(${params})
MIGRAPHX_GLOBAL void ${kernel}(${params})
{
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto... xs) {
${layernorm}<${axis}>(${post}, ${eps}, xs...);
......@@ -122,7 +122,7 @@ struct layernorm_compiler : compiler<layernorm_compiler>
v["kernel"] =
v["layernorm"].to<std::string>() + "_" + generate_name_from_ops(*pm) + "_kernel";
}
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
return compile_op(ctx, to_shapes(ins->inputs()), v);
}
};
......
......@@ -36,19 +36,32 @@ struct mlir_compiler : compiler<mlir_compiler>
operation compile_op(context&, const std::vector<shape>&, const value&) const { return {}; }
compiler_replace compile(context& ctx, instruction_ref ins, const operation&) const
compiler_replace
compile(const context& ctx, instruction_ref ins, const operation&, const value& solution) const
{
auto* smod = ins->module_inputs().front();
assert(smod->get_parameter_names().size() == ins->inputs().size() - 1);
return insert(compile_mlir(ctx, *smod, ins->inputs()));
return insert(compile_mlir(ctx, *smod, ins->inputs(), solution));
}
compiler_replace insert(code_object_op co) const
{
return [co = std::move(co)](module& m, instruction_ref ins) {
auto mlir = insert_mlir(m, ins, co, ins->inputs());
m.replace_instruction(ins, mlir);
};
return {std::move(co), [](module& m, instruction_ref ins, const operation& op) {
auto mlir = insert_mlir(m, ins, any_cast<code_object_op>(op), ins->inputs());
m.replace_instruction(ins, mlir);
}};
}
optional<tuning_config> get_tuning_config(const context& ctx,
instruction_ref ins,
const operation&,
bool exhaustive) const
{
if(not exhaustive)
return nullopt;
auto shapes = to_shapes(ins->inputs());
auto* smod = ins->module_inputs().front();
return get_tuning_config_mlir(ctx, *smod, shapes);
}
};
......
......@@ -44,7 +44,7 @@ static const char* const pointwise_kernel = R"__migraphx__(
namespace migraphx {
extern "C" {
__global__ void pad_kernel(void* input_p, void* output_p)
MIGRAPHX_GLOBAL void pad_kernel(void* input_p, void* output_p)
{
auto offsets = index_ints<${offsets}>{};
auto idx = make_index();
......@@ -92,7 +92,7 @@ struct pad_compiler : compiler<pad_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
return compile_op(ctx, to_shapes(ins->inputs()), op.to_value());
}
};
} // namespace gpu
......
......@@ -44,7 +44,7 @@ namespace migraphx {
${preamble}
extern "C" {
__global__ void ${kernel}(${params})
MIGRAPHX_GLOBAL void ${kernel}(${params})
{
auto idx = make_index();
pointwise(idx, ${transformers})(${lambda}, ${args});
......@@ -72,7 +72,7 @@ struct pointwise_compiler : compiler<pointwise_compiler>
hip_compile_options options;
options.inputs = inputs;
options.output = inputs.back();
options.virtual_inputs = reduce_dims(inputs);
options.virtual_inputs = reduce_dims(normalize_permutation(inputs));
options.params = "-Wno-float-equal";
auto axis = find_fast_axis(options.virtual_inputs);
auto vec = vectorize::elements(ctx, axis, options.virtual_inputs);
......@@ -93,10 +93,10 @@ struct pointwise_compiler : compiler<pointwise_compiler>
{
if(contains({"layout", "contiguous"}, op.name()))
{
return replace(compile_op(
return compile_op(
ctx,
to_shapes(ins->inputs()),
{{"lambda", "[](auto x) { return x; }"}, {"kernel", op.name() + "_kernel"}}));
{{"lambda", "[](auto x) { return x; }"}, {"kernel", op.name() + "_kernel"}});
}
else
{
......@@ -105,10 +105,9 @@ struct pointwise_compiler : compiler<pointwise_compiler>
auto pf = generate_pointwise(*pm, "inner_pointwise");
std::string lambda = "MIGRAPHX_LIFT(inner_pointwise)";
auto kernel_name = generate_name_from_ops(*pm) + "_kernel";
return replace(
compile_op(ctx,
to_shapes(ins->inputs()),
{{"lambda", lambda}, {"preamble", pf}, {"kernel", kernel_name}}));
return compile_op(ctx,
to_shapes(ins->inputs()),
{{"lambda", lambda}, {"preamble", pf}, {"kernel", kernel_name}});
}
}
};
......
......@@ -45,7 +45,7 @@ namespace migraphx {
${preamble}
extern "C" {
__global__ void reduce_kernel(void* input_p, void* output_p)
MIGRAPHX_GLOBAL void reduce_kernel(void* input_p, void* output_p)
{
transform_args(make_tensors(), ${transformers})(input_p, output_p)([](auto input, auto output) {
......@@ -84,7 +84,7 @@ static shape get_reduced_shape(const shape& s, const std::vector<T>& axes)
std::fill(lens.begin(), lens.end(), 1);
for(const auto& axis : axes)
lens[axis] = s.lens()[axis];
return shape{s.type(), lens};
return s.with_lens(lens);
}
template <class T>
......@@ -93,7 +93,7 @@ static shape get_output_shape(const shape& s, const std::vector<T>& axes)
auto lens = s.lens();
for(const auto& axis : axes)
lens[axis] = 1;
return shape{s.type(), lens};
return s.with_lens(lens);
}
template <class ReduceLens>
......@@ -189,7 +189,7 @@ struct simple_reduce_compiler : compiler<simple_reduce_compiler>
v["read"] = r.read;
v["write"] = r.write;
v["init"] = r.init;
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
return compile_op(ctx, to_shapes(ins->inputs()), v);
}
};
......@@ -228,7 +228,7 @@ struct fused_reduce_compiler : compiler<fused_reduce_compiler>
auto virtual_inputs = inputs;
virtual_inputs.push_back(get_reduced_shape(inputs.front(), axes));
virtual_inputs.push_back(get_output_shape(inputs.front(), axes));
virtual_inputs = reduce_dims(virtual_inputs);
virtual_inputs = reduce_dims(normalize_permutation(virtual_inputs));
auto reduce_output_shape = virtual_inputs.back();
virtual_inputs.pop_back();
auto reduction_shape = virtual_inputs.back();
......@@ -285,7 +285,7 @@ struct fused_reduce_compiler : compiler<fused_reduce_compiler>
v["preamble"] = generate_reduce(*rm, "fused_reduce_op");
v["lambda"] = "MIGRAPHX_LIFT(fused_reduce_op)";
v["kernel"] = generate_name_from_ops(*rm) + "_kernel";
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
return compile_op(ctx, to_shapes(ins->inputs()), v);
}
};
} // namespace gpu
......
......@@ -41,7 +41,7 @@ namespace migraphx {
extern "C" {
__global__ void roialign_kernel(void* in_x, void* in_rois, void* in_ind, void* y)
MIGRAPHX_GLOBAL void roialign_kernel(void* in_x, void* in_rois, void* in_ind, void* y)
{
make_tensors()(in_x, in_rois, in_ind, y)([](auto&&... xs) {
auto settings = make_roalign_settings(MIGRAPHX_MAKE_CONSTANT(float{ROIS_OFFSET}),
......@@ -92,7 +92,7 @@ struct roialign_compiler : compiler<roialign_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
return compile_op(ctx, to_shapes(ins->inputs()), op.to_value());
}
};
......
......@@ -42,7 +42,7 @@ namespace migraphx {
extern "C" {
__global__ void scatternd_kernel(void* in_indices, void* in_updates, void* output)
MIGRAPHX_GLOBAL void scatternd_kernel(void* in_indices, void* in_updates, void* output)
{
make_tensors()(in_indices, in_updates, output)([](auto&&... xs) {
scatternd(xs..., ${reduction}{});
......@@ -85,15 +85,15 @@ struct scatternd_compiler : compiler<scatternd_compiler>
{{"reduction", reduction}}));
}
compiler_replace insert(const operation& op) const
compiler_replace insert(const operation& co) const
{
return [=](module& m, instruction_ref ins) {
auto args = ins->inputs();
args.back() =
m.insert_instruction(ins, make_op("hip::copy"), args.front(), args.back());
args.erase(args.begin());
return m.replace_instruction(ins, op, args);
};
return {co, [](module& m, instruction_ref ins, const operation& op) {
auto args = ins->inputs();
args.back() =
m.insert_instruction(ins, make_op("hip::copy"), args.front(), args.back());
args.erase(args.begin());
return m.replace_instruction(ins, op, args);
}};
}
};
......
......@@ -45,7 +45,7 @@ static const char* const softmax_kernel = R"__migraphx__(
namespace migraphx {
extern "C" {
__global__ void softmax_kernel(void* input_p, void* output_p)
MIGRAPHX_GLOBAL void softmax_kernel(void* input_p, void* output_p)
{
transform_args(make_tensors(), ${transformers})(input_p, output_p)([](auto input, auto output) {
softmax<${axis}>(input, output);
......@@ -95,7 +95,7 @@ struct softmax_compiler : compiler<softmax_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
return compile_op(ctx, to_shapes(ins->inputs()), op.to_value());
}
};
......
......@@ -272,6 +272,18 @@ struct integral_const_array : array<T, sizeof...(Xs)>
MIGRAPHX_DEVICE_CONSTEXPR integral_const_array() : base_array({Xs...}) {}
};
template <class T, class... Ts>
constexpr auto make_const_array(T x, Ts... xs)
{
return integral_const_array<typename T::value_type, x, xs...>{};
}
template <class T, T... Xs, class F>
constexpr auto unpack(integral_const_array<T, Xs...>, F f)
{
return f(_c<Xs>...);
}
template <class T, T... Xs, class F>
constexpr auto transform(integral_const_array<T, Xs...>, F f)
{
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_KERNELS_CK_HPP
#define MIGRAPHX_GUARD_KERNELS_CK_HPP
#include <migraphx/kernels/debug.hpp>
#include <migraphx/kernels/types.hpp>
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/tensor_view.hpp>
#include <ck/utility/common_header.hpp>
#include <ck/tensor_description/tensor_descriptor.hpp>
#include <ck/tensor_description/tensor_descriptor_helper.hpp>
#include <ck/tensor_operation/gpu/device/tensor_layout.hpp>
namespace migraphx {
namespace detail {
template <class T>
struct to_ck_type_impl
{
using type = T;
};
template <>
struct to_ck_type_impl<migraphx::half>
{
using type = ck::half_t;
};
template <class T>
struct to_ck_type_impl<const T>
{
using type = const typename to_ck_type_impl<T>::type;
};
template <class Shape>
constexpr bool is_row_major()
{
constexpr auto strides = Shape{}.strides;
MIGRAPHX_ASSERT(strides.size() >= 2);
if(strides.back() == 1)
{
MIGRAPHX_ASSERT(not Shape{}.is_transposed());
return true;
}
MIGRAPHX_ASSERT(strides[strides.size() - 2] == 1);
return false;
}
} // namespace detail
template <class T>
using to_ck_type = typename detail::to_ck_type_impl<T>::type;
template <class T>
constexpr auto to_ck_pointer(T* x)
{
return static_cast<to_ck_type<T>*>(x);
}
template <class T>
constexpr auto to_ck_const_pointer(const T* x)
{
return static_cast<const to_ck_type<T>*>(x);
}
template <class Shape>
using to_ck_gemm_layout = conditional_t<detail::is_row_major<get_shape_c<Shape>>(),
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor>;
template <class Tensor>
constexpr auto to_ck_tensor()
{
constexpr auto s = get_shape_c<Tensor>{};
return sequence(s.lens.size(), [&](auto... is) {
return ck::make_naive_tensor_descriptor(ck::make_tuple(s.lens[is]...),
ck::make_tuple(s.strides[is]...));
});
}
template <class F>
struct ck_function_adaptor : F
{
template <class... Ts>
constexpr ck_function_adaptor(Ts&&... xs) : F(static_cast<Ts&&>(xs)...)
{
}
template <class T, class... Ts>
constexpr void operator()(T& out, Ts&&... xs) const
{
out = static_cast<const F&>(*this)(static_cast<Ts&&>(xs)...);
}
};
struct ck_nop
{
template <class T>
constexpr void operator()(T&) const
{
}
};
struct ck_passthrough
{
template <class T, class U>
constexpr void operator()(T& y, U x) const
{
y = x;
}
};
struct ck_scale
{
constexpr ck_scale(float s) : scale(s) {}
template <class T, class U>
constexpr void operator()(T& y, U x) const
{
y = x * static_cast<U>(scale);
}
float scale;
};
struct ck_add
{
template <class T, class U>
constexpr void operator()(T& y, U x) const
{
y += x;
}
};
#ifdef MIGRAPHX_CK_CHECK
#define MIGRAPHX_CK_STATIC_ASSERT static_assert
#else
#define MIGRAPHX_CK_STATIC_ASSERT(...)
#endif
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_CK_HPP
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_KERNELS_CK_GEMM_HPP
#define MIGRAPHX_GUARD_KERNELS_CK_GEMM_HPP
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/tensor_view.hpp>
#include <migraphx/kernels/ck.hpp>
#include <migraphx/kernels/gemm_batcher.hpp>
namespace migraphx {
// In CK, the B matrix is ordered as N,K instead of K,N
template <class Dims>
constexpr auto ck_transposeb_dims(Dims dims)
{
return unpack(dims, [](auto k, auto n) { return make_const_array(n, k); });
}
template <class Tensor>
using ck_transposeb = decltype(make_shape(ck_transposeb_dims(get_shape_c<Tensor>{}.lens),
ck_transposeb_dims(get_shape_c<Tensor>{}.strides)));
template <class G, class E, class A, class B, class... Ds>
__device__ void ck_gemm_matrix(E e, A a, B b, Ds... ds)
{
constexpr auto desc = G::make_descriptor(to_ck_tensor<A>(),
to_ck_tensor<ck_transposeb<B>>(),
ck::make_tuple(to_ck_tensor<Ds>()...),
to_ck_tensor<E>());
static_assert(desc.IsValid(), "Invalid ck gemm.");
G::Run(desc,
to_ck_const_pointer(a.data()),
to_ck_const_pointer(b.data()),
ck::make_tuple(to_ck_const_pointer(ds.data())...),
to_ck_pointer(e.data()));
}
template <class G, index_int BlocksPerBatch, class... Ts>
__device__ void ck_gemm(Ts... xs)
{
gemm_batch_args(make_index(), _c<BlocksPerBatch>, xs...)(
[](auto... ys) { ck_gemm_matrix<G>(ys...); });
}
} // namespace migraphx
#endif
......@@ -122,12 +122,14 @@ struct source_location_capture
{
T x;
source_location loc;
template <class U, class = decltype(T(U{}))>
// declval is a workaround since default constructor for "U" is not working with rocm-5.6
template <class U>
static U&& declval();
template <class U, class = decltype(T(declval<U>()))>
constexpr source_location_capture(U px, source_location ploc = source_location{})
: x(px), loc(ploc)
{
}
constexpr operator source_location() const { return loc; }
constexpr operator T() const { return x; }
......
......@@ -32,8 +32,17 @@
// NOLINTNEXTLINE
#define MIGRAPHX_LIFT(...) \
[](auto&&... private_lisft_xs) MIGRAPHX_RETURNS( \
(__VA_ARGS__)(static_cast<decltype(private_lisft_xs)>(private_lisft_xs)...))
[](auto&&... private_lifts_xs) MIGRAPHX_RETURNS( \
(__VA_ARGS__)(static_cast<decltype(private_lifts_xs)>(private_lifts_xs)...))
// NOLINTNEXTLINE
#define MIGRAPHX_LIFT_CLASS(name, ...) \
struct name \
{ \
template <class... PrivateLiftTs> \
constexpr auto operator()(PrivateLiftTs&&... private_lifts_xs) const MIGRAPHX_RETURNS( \
(__VA_ARGS__)(static_cast<decltype(private_lifts_xs)>(private_lifts_xs)...)) \
}
namespace migraphx {
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_KERNELS_GEMM_BATCHER_HPP
#define MIGRAPHX_GUARD_KERNELS_GEMM_BATCHER_HPP
#include <migraphx/kernels/tensor_view.hpp>
#include <migraphx/kernels/functional.hpp>
#include <migraphx/kernels/index.hpp>
namespace migraphx {
template <class Tensor>
constexpr auto gemm_get_batches()
{
constexpr auto lens = get_shape_c<Tensor>{}.lens;
constexpr auto strides = get_shape_c<Tensor>{}.strides;
constexpr auto new_lens = sequence(
lens.size() - _c<2>, [&](auto... is) { return make_const_array(_c<lens[is]>...); });
constexpr auto new_strides = sequence(
strides.size() - _c<2>, [&](auto... is) { return make_const_array(_c<strides[is]>...); });
return make_shape(new_lens, new_strides);
}
template <class Tensor>
constexpr auto gemm_get_matrix()
{
constexpr auto lens = get_shape_c<Tensor>{}.lens;
constexpr auto strides = get_shape_c<Tensor>{}.strides;
constexpr auto m = lens.size() - _c<2>;
constexpr auto n = lens.size() - _c<1>;
constexpr auto new_lens = make_const_array(_c<lens[m]>, _c<lens[n]>);
constexpr auto new_strides = make_const_array(_c<strides[m]>, _c<strides[n]>);
return make_shape(new_lens, new_strides);
}
template <class Tensor, class T>
constexpr auto gemm_batch_slice(Tensor t, T i)
{
constexpr auto batch = gemm_get_batches<Tensor>();
constexpr auto matrix = gemm_get_matrix<Tensor>();
MIGRAPHX_ASSERT((batch.index(i) + matrix.element_space()) <= t.get_shape().element_space());
return make_tensor_view(t.data() + batch.index(i), matrix);
}
template <class BlocksPerBatch, class T, class... Ts>
constexpr auto gemm_batch_args(index idx, BlocksPerBatch bpb, T x, Ts... xs)
{
return [=](auto f) {
// All tensors should have the same rank
static_assert(
(true and ... and (get_shape_c<T>{}.lens.size() == get_shape_c<Ts>{}.lens.size())));
if constexpr(get_shape_c<T>{}.lens.size() > 2)
{
// Get the first batch since all batches should have the same number of elements
constexpr auto batch = gemm_get_batches<T>();
static_assert(
(true and ... and (batch.elements() == gemm_get_batches<Ts>().elements())));
idx.group_stride(bpb * batch.elements(), [&](auto gidx) {
const auto batch_idx = gidx / bpb;
f(gemm_batch_slice(x, batch_idx), gemm_batch_slice(xs, batch_idx)...);
});
}
else
{
f(x, xs...);
}
};
}
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_GEMM_BATCHER_HPP
......@@ -28,10 +28,6 @@
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
#include <hip/math_functions.h>
#include <hip/hip_math_constants.h>
#elif defined(MIGRAPHX_ENABLE_HIPRTC_WORKAROUNDS)
#include <hip/hip_common.h>
#include <hip/hip_math_constants.h>
#endif
#endif // MIGRAPHX_GUARD_KERNELS_HIP_HPP
......@@ -130,6 +130,8 @@ struct index
return blockDim.x;
}
#endif
constexpr auto ngroup() const { return nglobal() / max_nlocal(); }
template <class N, class Stride>
static constexpr auto max_stride_iterations(N n, Stride stride)
{
......@@ -231,6 +233,12 @@ struct index
{
for_stride<true>(local, n, nlocal(), f);
}
template <class F, class N>
__device__ void group_stride(N n, F f) const
{
for_stride<false>(group, n, ngroup(), f);
}
};
#ifdef MIGRAPHX_NLOCAL
......
......@@ -138,7 +138,7 @@ MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, floor, ::hfloor)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, isnan, ::__hisnan)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, log, ::hlog)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, rsqrt, ::hrsqrt)
// MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, sin, ::hsin)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, sin, ::hsin)
MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, sqrt, ::hsqrt)
// Use float to compute half overload
......@@ -161,8 +161,7 @@ MIGRAPHX_DEVICE_MATH_HALF(fmod, ::fmod)
// Map math functions to hip half2 functions
// The half2 type is defined in include/hip/amd_detail/hip_fp16_gcc.h and is 2 16-bit floats
// packed into a 32-bit number. See include/hip/amd_detail/hip_fp16_math_fwd.h for the HIP names
// Most but not all of these math ops have operators of the same names. Ones not yet implemented
// at this time are: exp2, exp10, log2, log10, isinf
// Most but not all of these math ops have operators of the same names.
MIGRAPHX_DEVICE_MATH_HALF2(abs, ::__habs2)
MIGRAPHX_DEVICE_MATH_HALF2(ceil, ::h2ceil)
MIGRAPHX_DEVICE_MATH_HALF2(cos, ::h2cos)
......@@ -176,7 +175,7 @@ MIGRAPHX_DEVICE_MATH_HALF2(log, ::h2log)
MIGRAPHX_DEVICE_MATH_HALF2(log10, ::h2log10)
MIGRAPHX_DEVICE_MATH_HALF2(log2, ::h2log2)
MIGRAPHX_DEVICE_MATH_HALF2(rsqrt, ::h2rsqrt)
// MIGRAPHX_DEVICE_MATH_HALF2(sin, ::h2sin)
MIGRAPHX_DEVICE_MATH_HALF2(sin, ::h2sin)
MIGRAPHX_DEVICE_MATH_HALF2(sqrt, ::h2sqrt)
template <class T, class U>
......@@ -189,9 +188,8 @@ MIGRAPHX_DEVICE_MATH_BINARY_FOR(float, max, ::max)
MIGRAPHX_DEVICE_MATH_BINARY_FOR(float, min, ::min)
MIGRAPHX_DEVICE_MATH_BINARY_FOR(double, max, ::max)
MIGRAPHX_DEVICE_MATH_BINARY_FOR(double, min, ::min)
// Add overloads for half that calls the float version
MIGRAPHX_DEVICE_MATH_BINARY_FOR(migraphx::half, max, ::fmaxf)
MIGRAPHX_DEVICE_MATH_BINARY_FOR(migraphx::half, min, ::fminf)
MIGRAPHX_DEVICE_MATH_BINARY_FOR(migraphx::half, max, ::__hmax)
MIGRAPHX_DEVICE_MATH_BINARY_FOR(migraphx::half, min, ::__hmin)
template <class T, MIGRAPHX_REQUIRES(not is_any_vec<T>())>
constexpr auto max(const T& a, const T& b)
......@@ -217,14 +215,6 @@ constexpr auto min(const T& a, const U& b)
return min<common_type_t<T, U>>(a, b);
}
// Sin for half is broken on hip, so use cos instead
template <class T, MIGRAPHX_REQUIRES(is_same<vec_type<T>, half>{})>
constexpr T sin(T x)
{
constexpr const T shift = HIP_PIO2_F;
return migraphx::cos(shift - x);
}
MIGRAPHX_DEVICE_MATH_VEC(abs)
MIGRAPHX_DEVICE_MATH_VEC(acos)
MIGRAPHX_DEVICE_MATH_VEC(acosh)
......
......@@ -244,13 +244,13 @@ __device__ void print_once(Ts... xs)
template <class... Ts>
__device__ void println(Ts... xs)
{
print_each(&coutln, xs...);
print_each(&cout, xs..., '\n');
}
template <class... Ts>
__device__ void println_once(Ts... xs)
{
print_each_once(&coutln, xs...);
print_each_once(&cout, xs..., '\n');
}
} // namespace migraphx
......
......@@ -79,20 +79,21 @@ __device__ void dpp_reduce(T& in, Op op)
#endif
// NOLINTNEXTLINE
#define MIGRAPHX_DPP_REDUCE(op, prefix) \
#define MIGRAPHX_DPP_REDUCE(op, prefix, sign) \
__device__ inline void dpp_reduce(double& x, op) { MIGRAPHX_DPP_REDUCE_ASM(x, prefix##_f64); } \
__device__ inline void dpp_reduce(float& x, op) { MIGRAPHX_DPP_REDUCE_ASM(x, prefix##_f32); } \
__device__ inline void dpp_reduce(half& x, op) { MIGRAPHX_DPP_REDUCE_ASM(x, prefix##_f16); } \
__device__ inline void dpp_reduce(int32_t& x, op) \
{ \
MIGRAPHX_DPP_REDUCE_ASM(x, prefix##_u32); \
MIGRAPHX_DPP_REDUCE_ASM(x, prefix##sign##32); \
} \
__device__ inline void dpp_reduce(uint32_t& x, op) { MIGRAPHX_DPP_REDUCE_ASM(x, prefix##_u32); }
MIGRAPHX_DPP_REDUCE(op::sum, v_add)
MIGRAPHX_DPP_REDUCE(op::max, v_max)
MIGRAPHX_DPP_REDUCE(op::min, v_min)
MIGRAPHX_DPP_REDUCE(op::product, v_mul)
// Note: when max and min are in int32_t, signed version of instruction needs to be used.
MIGRAPHX_DPP_REDUCE(op::sum, v_add, _u)
MIGRAPHX_DPP_REDUCE(op::product, v_mul, _u)
MIGRAPHX_DPP_REDUCE(op::max, v_max, _i)
MIGRAPHX_DPP_REDUCE(op::min, v_min, _i)
template <class Op, class T, class Index, class F>
__device__ auto block_reduce(index idx, Op op, T init, Index n, F f)
......@@ -570,7 +571,7 @@ template <class Algo, class Reduced, class Output, class F>
__device__ void fused_reduce(Output output, F f)
{
Algo::template run<Reduced>([&](auto out_idx, auto r) {
auto result = f(r);
auto result = f(r, out_idx);
if constexpr(reduce::is_inner_storage<decltype(result)>{})
{
r.inner([&](auto& y, auto x) { y = x; })(output, result);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment