Commit 229a9fec authored by charlie's avatar charlie
Browse files

Merge branch 'develop' of github.com:ROCmSoftwarePlatform/AMDMIGraphX into dyn_nms

parents eb4dfb49 f2531606
...@@ -21,8 +21,8 @@ ...@@ -21,8 +21,8 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#ifndef MIGRAPHX_GUARD_RTGLIB_MIOPEN_MLIR_CONV_HPP #ifndef MIGRAPHX_GUARD_GPU_FUSE_MLIR_HPP
#define MIGRAPHX_GUARD_RTGLIB_MIOPEN_MLIR_CONV_HPP #define MIGRAPHX_GUARD_GPU_FUSE_MLIR_HPP
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/gpu/context.hpp> #include <migraphx/gpu/context.hpp>
...@@ -30,18 +30,19 @@ ...@@ -30,18 +30,19 @@
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
struct module; struct module_pass_manager;
namespace gpu { namespace gpu {
struct mlir_conv
struct fuse_mlir
{ {
context* ctx; context* ctx = nullptr;
std::string name() const { return "mlir::convolution"; } std::string name() const { return "gpu::fuse_mlir"; }
void apply(module& m) const; void apply(module_pass_manager& mpm) const;
}; };
} // namespace gpu } // namespace gpu
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
#endif // MIGRAPHX_GUARD_GPU_FUSE_MLIR_HPP
#endif
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_GPU_MLIR_HPP
#define MIGRAPHX_GUARD_RTGLIB_GPU_MLIR_HPP
#include <string>
#include <vector>
#include <migraphx/config.hpp>
#include <migraphx/gpu/code_object_op.hpp>
#include <migraphx/instruction_ref.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct module;
namespace gpu {
std::string dump_mlir(const module& m);
code_object_op compile_mlir(const context& ctx, const module& m);
instruction_ref insert_mlir(module& m,
instruction_ref ins,
code_object_op co,
const std::vector<instruction_ref>& inputs);
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -41,7 +41,7 @@ struct miopen_quant_convolution ...@@ -41,7 +41,7 @@ struct miopen_quant_convolution
bool int8_x4_format = false; bool int8_x4_format = false;
shared<convolution_descriptor> cd; shared<convolution_descriptor> cd;
miopenConvFwdAlgorithm_t algo{}; miopenConvFwdAlgorithm_t algo{};
miopenHandle_t handle = nullptr; uint64_t solution_id = 0;
template <class Self, class F> template <class Self, class F>
static auto reflect(Self& self, F f) static auto reflect(Self& self, F f)
...@@ -55,7 +55,7 @@ struct miopen_quant_convolution ...@@ -55,7 +55,7 @@ struct miopen_quant_convolution
shape compute_shape(const std::vector<shape>& inputs) const; shape compute_shape(const std::vector<shape>& inputs) const;
argument argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const; compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
shape compile(context& ctx, const shape& output_shape, std::vector<shape> inputs); shape find(context& ctx, const shape& output_shape, std::vector<shape> inputs);
void finalize(context& ctx, const shape& output_shape, std::vector<shape> inputs); void finalize(context& ctx, const shape& output_shape, std::vector<shape> inputs);
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{ {
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/mlir.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct mlir_compiler : compiler<mlir_compiler>
{
std::vector<std::string> names() const { return {"gpu::mlir_conv"}; }
operation compile_op(context&, const std::vector<shape>&, const value&) const { return {}; }
compiler_replace compile(context& ctx, instruction_ref ins, const operation&) const
{
auto* smod = ins->module_inputs().front();
assert(smod->get_parameter_names().size() == ins->inputs().size() - 1);
return insert(compile_mlir(ctx, *smod));
}
compiler_replace insert(code_object_op co) const
{
return [co = std::move(co)](module& m, instruction_ref ins) {
auto mlir = insert_mlir(m, ins, co, ins->inputs());
m.replace_instruction(ins, mlir);
};
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/module.hpp>
#include <migraphx/pass_manager.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
using namespace migraphx::gpu::gen; // NOLINT
static const char* const softmax_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/softmax.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <args.hpp>
namespace migraphx {
extern "C" {
__global__ void softmax_kernel(void* input_p, void* output_p)
{
transform_args(make_tensors(), ${transformers})(input_p, output_p)([](auto input, auto output) {
softmax<${axis}>(input, output);
});
}
}
} // namespace migraphx
)__migraphx__";
struct softmax_compiler : compiler<softmax_compiler>
{
std::vector<std::string> names() const { return {"softmax"}; }
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
// TODO: Use reduce_dims
auto axis = v.at("axis").to<int64_t>();
auto faxis = find_fast_axis({inputs.front()});
vectorize vec{};
// Vectorize if the axis is a reduction axis
if(faxis == axis)
{
vec = vectorize::elements(faxis, inputs);
}
auto relements = inputs[0].lens()[axis] / vec.size;
auto nelements = (inputs.back().elements() / inputs[0].lens()[axis]);
auto block_size = compute_block_size(relements, 256);
hip_compile_options options;
options.set_launch_params(
v, compute_global_for(ctx, nelements * block_size, 256), block_size);
options.output = inputs.back();
options.inputs = inputs;
options.kernel_name = "softmax_kernel";
auto src = interpolate_string(
softmax_kernel,
{{"transformers", make_transformer_args(vec)}, {"axis", to_string(axis)}});
return compile_hip_code_object(src, options);
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
#include <migraphx/kernels/types.hpp> #include <migraphx/kernels/types.hpp>
#include <migraphx/kernels/type_traits.hpp> #include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/integral_constant.hpp> #include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/functional.hpp>
#include <migraphx/kernels/debug.hpp> #include <migraphx/kernels/debug.hpp>
namespace migraphx { namespace migraphx {
...@@ -213,6 +214,13 @@ constexpr auto transform(integral_const_array<T, Xs...>, F f) ...@@ -213,6 +214,13 @@ constexpr auto transform(integral_const_array<T, Xs...>, F f)
return integral_const_array<T, f(Xs)...>{}; return integral_const_array<T, f(Xs)...>{};
} }
template <class T, T... Xs, class F>
constexpr auto transform_i(integral_const_array<T, Xs...>, F f)
{
return sequence_c<sizeof...(Xs)>(
[=](auto... is) { return integral_const_array<T, f(Xs, is)...>{}; });
}
template <class T, T... Xs, class U, U... Ys, class F> template <class T, T... Xs, class U, U... Ys, class F>
constexpr auto transform(integral_const_array<T, Xs...>, integral_const_array<U, Ys...>, F f) constexpr auto transform(integral_const_array<T, Xs...>, integral_const_array<U, Ys...>, F f)
{ {
......
...@@ -24,7 +24,7 @@ ...@@ -24,7 +24,7 @@
#ifndef MIGRAPHX_GUARD_KERNELS_FUNCTIONAL_HPP #ifndef MIGRAPHX_GUARD_KERNELS_FUNCTIONAL_HPP
#define MIGRAPHX_GUARD_KERNELS_FUNCTIONAL_HPP #define MIGRAPHX_GUARD_KERNELS_FUNCTIONAL_HPP
#include <migraphx/kernels/array.hpp> #include <migraphx/kernels/integral_constant.hpp>
// NOLINTNEXTLINE // NOLINTNEXTLINE
#define MIGRAPHX_RETURNS(...) \ #define MIGRAPHX_RETURNS(...) \
......
...@@ -175,6 +175,21 @@ constexpr auto sliced(Slicer slicer, F f) ...@@ -175,6 +175,21 @@ constexpr auto sliced(Slicer slicer, F f)
}; };
} }
template <class Input, index_int Axis>
constexpr auto compute_reduce_axis()
{
constexpr auto lens =
transform_i(get_shape_c<Input>{}.lens, [](index_int x, index_int i) -> index_int {
if(i == Axis)
return 1;
return x;
});
return make_shape(lens, get_shape_c<Input>{}.strides);
}
template <class Input, index_int Axis>
using with_axis = decltype(compute_reduce_axis<Input, Axis>());
struct block struct block
{ {
template <class Slicer> template <class Slicer>
...@@ -201,6 +216,14 @@ struct block ...@@ -201,6 +216,14 @@ struct block
if(idx.local == 0) if(idx.local == 0)
f(); f();
} }
template <class F>
__device__ auto inner(F f) const
{
return sliced(slicer, [=](auto x, auto... xs) {
idx.local_stride(x.get_shape().elements(), [&](auto j) { f(x[j], xs[j]...); });
});
}
}; };
template <class Slicer> template <class Slicer>
...@@ -247,6 +270,17 @@ struct lane ...@@ -247,6 +270,17 @@ struct lane
{ {
f(); f();
} }
template <class F>
__device__ auto inner(F f) const
{
return sliced(slicer, [=](auto x, auto... xs) {
for(index_int j = 0; j < x.get_shape().elements(); j++)
{
f(x[j], xs[j]...);
}
});
}
}; };
template <class Slicer> template <class Slicer>
......
...@@ -32,6 +32,7 @@ namespace migraphx { ...@@ -32,6 +32,7 @@ namespace migraphx {
template <class Lens, class Strides> template <class Lens, class Strides>
struct shape struct shape
{ {
using shape_type = shape;
using index_array = typename Lens::base_array; using index_array = typename Lens::base_array;
Lens lens = {}; Lens lens = {};
Strides strides = {}; Strides strides = {};
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_KERNELS_SOFTMAX_HPP
#define MIGRAPHX_GUARD_KERNELS_SOFTMAX_HPP
#include <migraphx/kernels/reduce.hpp>
#include <migraphx/kernels/ops.hpp>
namespace migraphx {
template <index_int Axis, class Input, class Output>
__device__ void softmax(Input input, Output output)
{
reduce::block::run<reduce::with_axis<Input, Axis>>([&](auto, auto r) {
auto batch_max = r.reduce(op::max{}, lowest{}, op::id{})(input);
auto batch_sum =
r.reduce(op::sum{}, 0, [&](auto x) { return migraphx::exp(x - batch_max); })(input);
r.inner([&](auto& y, auto x) { y = migraphx::exp(x - batch_max) / batch_sum; })(output,
input);
});
}
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_SOFTMAX_HPP
...@@ -27,6 +27,8 @@ ...@@ -27,6 +27,8 @@
#include <migraphx/kernels/types.hpp> #include <migraphx/kernels/types.hpp>
#include <migraphx/kernels/integral_constant.hpp> #include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/functional.hpp> #include <migraphx/kernels/functional.hpp>
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/debug.hpp>
namespace migraphx { namespace migraphx {
......
...@@ -186,7 +186,6 @@ struct miopen_apply ...@@ -186,7 +186,6 @@ struct miopen_apply
add_extend_op("rnn_var_sl_shift_output"); add_extend_op("rnn_var_sl_shift_output");
add_extend_op("rnn_var_sl_shift_sequence"); add_extend_op("rnn_var_sl_shift_sequence");
add_extend_op("scatter_none"); add_extend_op("scatter_none");
add_extend_op("softmax");
add_extend_op("topk"); add_extend_op("topk");
add_batch_norm_inference_op(); add_batch_norm_inference_op();
...@@ -301,7 +300,7 @@ struct miopen_apply ...@@ -301,7 +300,7 @@ struct miopen_apply
auto&& op = any_cast<op::deconvolution>(ins->get_operator()); auto&& op = any_cast<op::deconvolution>(ins->get_operator());
auto conv = miopen_deconvolution{op, make_deconv(op)}; auto conv = miopen_deconvolution{op, make_deconv(op)};
auto ws = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs())); auto ws = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
auto workspace = insert_allocation(ins, ws); auto workspace = insert_allocation(ins, ws);
auto output = insert_allocation(ins, ins->get_shape()); auto output = insert_allocation(ins, ins->get_shape());
...@@ -332,7 +331,7 @@ struct miopen_apply ...@@ -332,7 +331,7 @@ struct miopen_apply
miopen_quant_convolution conv; miopen_quant_convolution conv;
auto compile_quant_conv_with_format = [&](bool format) { auto compile_quant_conv_with_format = [&](bool format) {
conv = miopen_quant_convolution{op, format, make_conv(op)}; conv = miopen_quant_convolution{op, format, make_conv(op)};
ws = conv.compile(get_context(), ins->get_shape(), to_shapes(ins->inputs())); ws = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
}; };
try try
......
This diff is collapsed.
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/mlir_conv.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/program.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/program.hpp>
#include <migraphx/gpu/kernel.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <utility>
#include <functional>
#include <algorithm>
#ifdef MIGRAPHX_MLIR_MIOPEN_SUPPORT
#include <Miir.h>
#endif // MIGRAPHX_MLIR_MIOPEN_SUPPORT
#include <cstdio>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct mlir_apply
{
module* mod = nullptr;
const mlir_conv* pass = nullptr;
const char* mlir_kernel_name = "migraphx_conv2d";
std::unordered_map<uint64_t, instruction_ref> literal_map{};
struct execution_spec
{
migraphx::value::binary binary;
size_t global_size;
size_t local_size;
execution_spec(migraphx::value::binary&& binary_m, size_t global_s, size_t local_s)
: binary(std::move(binary_m)), global_size(global_s), local_size(local_s)
{
}
};
std::unordered_map<std::string, std::shared_ptr<execution_spec>> binary_map{};
context& get_context() const
{
assert(pass != nullptr);
assert(pass->ctx != nullptr);
return *pass->ctx;
}
void init() const
{
assert(mod != nullptr);
assert(pass != nullptr);
}
std::shared_ptr<execution_spec> make_mlir_binary(instruction_ref op_r)
{
std::shared_ptr<execution_spec> result;
#ifdef MIGRAPHX_MLIR_MIOPEN_SUPPORT
auto conv = any_cast<op::convolution>(op_r->get_operator());
auto inp_t = op_r->inputs().at(0)->get_shape();
auto flt_t = op_r->inputs().at(1)->get_shape();
auto out_t = op_r->get_shape();
auto get_type_str = [](const shape& s) -> const char* {
switch(s.type())
{
case shape::float_type: return "f32";
case shape::half_type: return "f16";
case shape::bool_type:
case shape::double_type:
case shape::uint8_type:
case shape::int8_type:
case shape::uint16_type:
case shape::int16_type:
case shape::int32_type:
case shape::int64_type:
case shape::uint32_type:
case shape::uint64_type:
case shape::tuple_type: break;
}
return nullptr;
};
const auto* inp_t_s = get_type_str(inp_t);
const auto* flt_t_s = get_type_str(flt_t);
const auto* out_t_s = get_type_str(out_t);
if(out_t_s == nullptr || inp_t_s == nullptr || flt_t_s == nullptr)
return result;
std::string mlir_options = "--kernel_name " + std::string(mlir_kernel_name);
// platform spec
auto& device = get_context().get_current_device();
char dev_name[64];
sprintf(dev_name, "gfx%lu%02lu", device.get_device_major(), device.get_device_minor());
mlir_options += " --arch " + std::string(dev_name) + " --num_cu " +
std::to_string(device.get_cu_count()); // ???
// Conv spec
mlir_options +=
" --operation "
"conv2d"
" --batchsize " +
std::to_string(conv.group) + " --groupsize " + std::to_string(1) + " --padding_h " +
std::to_string(conv.padding[0]) + " --padding_w " + std::to_string(conv.padding[1]) +
" --conv_stride_h " + std::to_string(conv.stride[0]) + " --conv_stride_w " +
std::to_string(conv.stride[1]) + " --dilation_h " + std::to_string(conv.dilation[0]) +
" --dilation_w " + std::to_string(conv.dilation[1]);
// Input spec
mlir_options += " --in_layout "
"NCHWG"
" --in_type " +
std::string(inp_t_s) + " --in_channels " + std::to_string(inp_t.lens()[1]) +
" --in_h " + std::to_string(inp_t.lens()[2]) + " --in_w " +
std::to_string(inp_t.lens()[3]);
// Filter spec
mlir_options += " --fil_layout "
"NCHWG"
" --fil_type " +
std::string(flt_t_s) + " --fil_h " + std::to_string(flt_t.lens()[2]) +
" --fil_w " + std::to_string(flt_t.lens()[3]);
// Output spec
mlir_options += " --out_layout "
"NCHWG"
" --out_type " +
std::string(out_t_s) + " --out_channels " +
std::to_string(out_t.lens()[1]) + " --out_h " +
std::to_string(out_t.lens()[2]) + " --out_w " +
std::to_string(out_t.lens()[3]);
auto bin_i = binary_map.find(mlir_options);
if(bin_i == binary_map.end())
{
size_t bin_size = 0;
using mlir_handle = MIGRAPHX_MANAGE_PTR(MiirHandle, miirDestroyHandle);
auto handle = mlir_handle(miirCreateHandle(mlir_options.c_str()));
if(miirLowerBin(handle.get()) == MIIR_SUCCESS &&
miirBufferGet(handle.get(), nullptr, &bin_size) == MIIR_SUCCESS)
{
migraphx::value::binary bin(bin_size);
if(miirBufferGet(handle.get(), reinterpret_cast<char*>(bin.data()), &bin_size) ==
MIIR_SUCCESS)
{
size_t global_size;
size_t block_size;
if(miirGetExecutionDims(handle.get(), &global_size, &block_size) ==
MIIR_SUCCESS)
{
result = std::make_shared<execution_spec>(
std::move(bin), global_size, block_size);
}
}
}
binary_map[mlir_options] = result;
}
else
{
result = bin_i->second;
}
#else // MIGRAPHX_MLIR_MIOPEN_SUPPORT
(void)op_r;
#endif // MIGRAPHX_MLIR_MIOPEN_SUPPORT
return result;
}
instruction_ref get_literal(uint64_t value)
{
auto fi = literal_map.find(value);
if(fi != literal_map.end())
return fi->second;
auto lit = mod->add_literal(value);
literal_map.emplace(value, lit);
return lit;
}
operation make_code_object_op(instruction_ref op_r, const std::shared_ptr<execution_spec>& spec)
{
// each pointer is expanded out to a MemRefDescriptor
auto inp_t = op_r->inputs().at(0)->get_shape();
auto flt_t = op_r->inputs().at(1)->get_shape();
auto out_t = op_r->get_shape();
auto i64 = shape(shape::uint64_type);
std::vector<shape> expected_inputs = {
flt_t, flt_t, i64, i64, i64, i64, i64, i64, i64, i64, i64, i64, i64, inp_t,
inp_t, i64, i64, i64, i64, i64, i64, i64, i64, i64, i64, i64, out_t, out_t,
i64, i64, i64, i64, i64, i64, i64, i64, i64, i64, i64, out_t};
return migraphx::make_op("gpu::code_object",
{
{"code_object", spec->binary},
{"symbol_name", mlir_kernel_name},
{"global", spec->global_size},
{"local", spec->local_size},
{"expected_inputs", migraphx::to_value(expected_inputs)},
{"output", migraphx::to_value(out_t)},
});
}
void add_memref_descriptor(std::vector<instruction_ref>& refs, instruction_ref inst)
{
const size_t offset = 0;
auto inst_t = inst->get_shape();
refs.push_back(inst);
refs.push_back(inst);
refs.push_back(get_literal(offset)); // offset
// dim sizes
std::transform(inst_t.lens().begin(),
inst_t.lens().end(),
std::back_inserter(refs),
[&](const auto& lval) { return get_literal(lval); });
refs.push_back(get_literal(1)); // G
// dim strides
std::transform(inst_t.strides().begin(),
inst_t.strides().end(),
std::back_inserter(refs),
[&](const auto& lval) { return get_literal(lval); });
refs.push_back(get_literal(1)); // G
}
instruction_ref insert_allocation(instruction_ref ins, const shape& s) const
{
return mod->insert_instruction(ins, hip_allocate{s});
}
void replace_conv_op(instruction_ref ins)
{
auto conv_bin = make_mlir_binary(ins);
if(conv_bin)
{
auto conv = make_code_object_op(ins, conv_bin);
auto inp = ins->inputs().at(0);
auto flt = ins->inputs().at(1);
auto out = insert_allocation(ins, ins->get_shape());
std::vector<instruction_ref> refs;
refs.reserve(3 * 13 + 1);
add_memref_descriptor(refs, flt);
add_memref_descriptor(refs, inp);
add_memref_descriptor(refs, out);
refs.push_back(out);
mod->replace_instruction(ins, conv, refs);
}
}
void apply()
{
init();
for(auto it : iterator_for(*mod))
{
if(it->name() == "convolution")
{
replace_conv_op(it);
}
}
}
};
void mlir_conv::apply(module& m) const { mlir_apply{&m, this}.apply(); }
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -67,7 +67,7 @@ argument miopen_quant_convolution::compute(context& ctx, ...@@ -67,7 +67,7 @@ argument miopen_quant_convolution::compute(context& ctx,
return args[3]; return args[3];
} }
shape miopen_quant_convolution::compile(context& ctx, shape miopen_quant_convolution::find(context& ctx,
const shape& output_shape, const shape& output_shape,
std::vector<shape> inputs) std::vector<shape> inputs)
{ {
...@@ -92,8 +92,8 @@ shape miopen_quant_convolution::compile(context& ctx, ...@@ -92,8 +92,8 @@ shape miopen_quant_convolution::compile(context& ctx,
x_shape = pack_int8_shape(x_shape); x_shape = pack_int8_shape(x_shape);
w_shape = pack_int8_shape(w_shape); w_shape = pack_int8_shape(w_shape);
} }
auto arg_vec4_x = to_gpu(generate_argument(x_shape)); auto x = to_gpu(generate_argument(x_shape));
auto arg_vec4_w = to_gpu(generate_argument(w_shape)); auto w = to_gpu(generate_argument(w_shape));
auto y = allocate_gpu(output_shape); auto y = allocate_gpu(output_shape);
auto workspace = allocate_gpu(workspace_shape); auto workspace = allocate_gpu(workspace_shape);
...@@ -101,9 +101,9 @@ shape miopen_quant_convolution::compile(context& ctx, ...@@ -101,9 +101,9 @@ shape miopen_quant_convolution::compile(context& ctx,
miopenConvAlgoPerf_t perf; miopenConvAlgoPerf_t perf;
auto status = miopenFindConvolutionForwardAlgorithm(ctx.get_stream().get_miopen(), auto status = miopenFindConvolutionForwardAlgorithm(ctx.get_stream().get_miopen(),
x_desc.get(), x_desc.get(),
arg_vec4_x.implicit(), x.implicit(),
w_desc.get(), w_desc.get(),
arg_vec4_w.implicit(), w.implicit(),
cd.get(), cd.get(),
y_desc.get(), y_desc.get(),
y.implicit(), y.implicit(),
...@@ -114,11 +114,35 @@ shape miopen_quant_convolution::compile(context& ctx, ...@@ -114,11 +114,35 @@ shape miopen_quant_convolution::compile(context& ctx,
workspace_size, workspace_size,
false); false);
if(status != miopenStatusSuccess) if(status != miopenStatusSuccess)
{ MIGRAPHX_THROW("MIOpen Quant Convolution: find convolution failed");
MIGRAPHX_THROW("QUANT_CONVOLUTION: find convolution failed");
}
handle = ctx.get_stream().get_miopen();
algo = perf.fwd_algo; algo = perf.fwd_algo;
size_t solution_count;
status = miopenConvolutionForwardGetSolutionCount(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&solution_count);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: get solution count failed");
std::vector<miopenConvSolution_t> solutions(solution_count);
status = miopenConvolutionForwardGetSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_count,
&solution_count,
solutions.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: get solution failed");
solution_id = solutions.front().solution_id;
return shape{shape::int8_type, {perf.memory}}; return shape{shape::int8_type, {perf.memory}};
} }
...@@ -126,13 +150,29 @@ void miopen_quant_convolution::finalize(context& ctx, ...@@ -126,13 +150,29 @@ void miopen_quant_convolution::finalize(context& ctx,
const shape& output_shape, const shape& output_shape,
std::vector<shape> inputs) std::vector<shape> inputs)
{ {
if(handle == ctx.get_stream().get_miopen()) if(cd == nullptr)
return; cd = make_conv(op);
if(solution_id == 0)
{
// Check that workspace hasn't changed // Check that workspace hasn't changed
auto size = inputs.at(2).bytes(); auto size = inputs.at(2).bytes();
auto ws = compile(ctx, output_shape, std::move(inputs)); auto ws = find(ctx, output_shape, inputs);
if(ws.bytes() > size) if(ws.bytes() > size)
MIGRAPHX_THROW("Workspace has changed during finalization."); MIGRAPHX_THROW("MIOpen Quant Convolution: workspace has changed during finalization.");
}
auto x_desc = make_tensor(inputs[0], int8_x4_format);
auto w_desc = make_tensor(inputs[1], int8_x4_format);
auto y_desc = make_tensor(output_shape);
auto status = miopenConvolutionForwardCompileSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: compile solution failed");
} }
shape miopen_quant_convolution::pack_int8_shape(const shape& s) const shape miopen_quant_convolution::pack_int8_shape(const shape& s) const
......
...@@ -53,10 +53,10 @@ ...@@ -53,10 +53,10 @@
#include <migraphx/gpu/compile_ops.hpp> #include <migraphx/gpu/compile_ops.hpp>
#include <migraphx/gpu/concat_gpu_opt.hpp> #include <migraphx/gpu/concat_gpu_opt.hpp>
#include <migraphx/gpu/context.hpp> #include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/fuse_ops.hpp> #include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/gpu/prefuse_ops.hpp> #include <migraphx/gpu/prefuse_ops.hpp>
#include <migraphx/gpu/lowering.hpp> #include <migraphx/gpu/lowering.hpp>
#include <migraphx/gpu/mlir_conv.hpp>
#include <migraphx/gpu/pack_int8_args.hpp> #include <migraphx/gpu/pack_int8_args.hpp>
#include <migraphx/gpu/schedule_model.hpp> #include <migraphx/gpu/schedule_model.hpp>
#include <migraphx/gpu/sync_device.hpp> #include <migraphx/gpu/sync_device.hpp>
...@@ -128,7 +128,8 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti ...@@ -128,7 +128,8 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{}, dead_code_elimination{},
enable_pass(not enabled(MIGRAPHX_DISABLE_POINTWISE_FUSION{}), fuse_pointwise{}), enable_pass(not enabled(MIGRAPHX_DISABLE_POINTWISE_FUSION{}), fuse_pointwise{}),
dead_code_elimination{}, dead_code_elimination{},
mlir_conv{&ctx}, fuse_mlir{&ctx},
dead_code_elimination{},
lowering{&ctx, options.offload_copy}, lowering{&ctx, options.offload_copy},
eliminate_contiguous{"gpu::contiguous"}, eliminate_contiguous{"gpu::contiguous"},
dead_code_elimination{}, dead_code_elimination{},
......
...@@ -205,4 +205,24 @@ TEST_CASE(contiguous_pointwise) ...@@ -205,4 +205,24 @@ TEST_CASE(contiguous_pointwise)
mm->begin(), mm->end(), [](auto&& ins) { return ins.name() == "contiguous"; })); mm->begin(), mm->end(), [](auto&& ins) { return ins.name() == "contiguous"; }));
} }
TEST_CASE(slice_contiguous)
{
migraphx::module m;
migraphx::shape s{migraphx::shape::float_type, {4, 2}};
auto x = m.add_parameter("x", s);
auto t = m.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), x);
auto c = m.add_instruction(migraphx::make_op("contiguous"), t);
auto s1 = m.add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), c);
auto s2 = m.add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {1}}, {"ends", {2}}}), c);
auto c1 = m.add_instruction(migraphx::make_op("contiguous"), s1);
auto c2 = m.add_instruction(migraphx::make_op("contiguous"), s2);
m.add_instruction(pass_standard_op{}, c1, c2);
run_pass(m);
EXPECT(std::count_if(
m.begin(), m.end(), [](auto&& ins) { return ins.name() == "contiguous"; }) == 1);
}
int main(int argc, const char* argv[]) { test::run(argc, argv); } int main(int argc, const char* argv[]) { test::run(argc, argv); }
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/write_literals.hpp>
#include <migraphx/ref/target.hpp>
#include <migraphx/module.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/verify_args.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/functional.hpp>
#include <test.hpp>
using migraphx::trim;
// m test_gpu_mlir && ./bin/test_gpu_mlir
struct mlir_gpu_target : migraphx::gpu::target
{
std::string name() const { return "mlir"; }
std::vector<migraphx::pass> get_passes(migraphx::context& gctx,
const migraphx::compile_options&) const
{
auto& ctx = migraphx::any_cast<migraphx::gpu::context>(gctx);
return {migraphx::gpu::write_literals{&ctx}};
}
};
std::string encode(const std::string& s)
{
std::stringstream ss;
bool prespace = false;
for(auto c : s)
{
if(std::isspace(c) != 0)
{
if(not prespace)
ss << " ";
prespace = true;
}
else if(std::isprint(c) != 0)
{
ss << c;
prespace = false;
}
}
return migraphx::trim(ss.str());
}
migraphx::program create_program_from_mlir(const migraphx::module& mmlir)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto names = mmlir.get_parameter_names();
std::vector<migraphx::instruction_ref> inputs;
std::transform(names.begin(), names.end(), std::back_inserter(inputs), [&](const auto& name) {
return mm->add_parameter(name, mmlir.get_parameter_shape(name));
});
std::sort(inputs.begin(), inputs.end(), migraphx::by(std::less<>{}, [](auto ins) {
return to_string(ins->get_operator());
}));
inputs.push_back(mm->add_parameter("output", mmlir.get_output_shapes().front()));
migraphx::gpu::context ctx;
migraphx::gpu::insert_mlir(*mm, mm->end(), compile_mlir(ctx, mmlir), inputs);
return p;
}
migraphx::parameter_map generate_params(const migraphx::program& p)
{
migraphx::parameter_map m;
std::size_t i = 0;
for(auto&& x : p.get_parameter_shapes())
{
// m[x.first] = migraphx::fill_argument(x.second, 1);
m[x.first] = migraphx::generate_argument(x.second, i++);
}
return m;
}
migraphx::argument run_gpu(migraphx::program p, const migraphx::parameter_map& inputs)
{
mlir_gpu_target t;
p.compile(t);
migraphx::parameter_map m;
for(auto&& input : inputs)
{
m[input.first] = t.copy_to(input.second);
}
for(auto&& x : p.get_parameter_shapes())
{
if(m.count(x.first) == 0)
{
m[x.first] = t.allocate(x.second);
}
}
return t.copy_from(p.eval(m).front());
}
migraphx::argument run_ref(migraphx::program p, const migraphx::parameter_map& inputs)
{
p.compile(migraphx::ref::target{});
return p.eval(inputs).front();
}
bool verify_mlir(const migraphx::module& mmlir)
{
migraphx::program ref;
ref.get_main_module()->insert_instructions(ref.get_main_module()->end(), &mmlir);
auto inputs = generate_params(ref);
auto mlir = create_program_from_mlir(mmlir);
return migraphx::verify_args("mlir", run_ref(ref, inputs), run_gpu(mlir, inputs));
}
TEST_CASE(conv)
{
const std::string mlir_output = R"__migraphx__(
module {
func @main(%arg0: tensor<2x8x3x3xf32>, %arg1: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} {
%0 = migraphx.convolution(%arg1, %arg0) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
return %0 : tensor<1x2x2x2xf32>
}
}
)__migraphx__";
migraphx::module m;
auto x = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}});
auto w = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}});
auto conv = m.add_instruction(migraphx::make_op("convolution"), x, w);
m.add_return({conv});
auto s = migraphx::gpu::dump_mlir(m);
// Skip test if MLIR is not enabled
if(s.empty())
return;
CHECK(encode(s) == encode(mlir_output));
EXPECT(verify_mlir(m));
}
TEST_CASE(conv_add_relu)
{
const std::string mlir_output = R"__migraphx__(
module {
func @main(%arg0: tensor<1x2x2x2xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} {
%0 = migraphx.convolution(%arg2, %arg1) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
%1 = migraphx.add(%0, %arg0) : (tensor<1x2x2x2xf32>, tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
%2 = migraphx.relu(%1) : (tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
return %2 : tensor<1x2x2x2xf32>
}
}
)__migraphx__";
migraphx::module m;
auto x = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}});
auto w = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}});
auto b = m.add_parameter("b", {migraphx::shape::float_type, {1, 2, 2, 2}});
auto conv = m.add_instruction(migraphx::make_op("convolution"), x, w);
auto add = m.add_instruction(migraphx::make_op("add"), conv, b);
auto relu = m.add_instruction(migraphx::make_op("relu"), add);
m.add_return({relu});
auto s = migraphx::gpu::dump_mlir(m);
// Skip test if MLIR is not enabled
if(s.empty())
return;
CHECK(encode(s) == encode(mlir_output));
EXPECT(verify_mlir(m));
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
...@@ -1141,4 +1141,106 @@ TEST_CASE(transpose_contiguous_reshape_binary_broadcast) ...@@ -1141,4 +1141,106 @@ TEST_CASE(transpose_contiguous_reshape_binary_broadcast)
EXPECT(m1 == m2); EXPECT(m1 == m2);
} }
TEST_CASE(transpose_slice)
{
migraphx::module m1;
{
auto x = m1.add_parameter("x", {migraphx::shape::float_type, {1, 384, 36, 64}});
auto slice1 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {0}}, {"ends", {12}}}), x);
auto transpose1 = m1.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), slice1);
auto slice2 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {12}}, {"ends", {24}}}), x);
auto transpose2 = m1.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), slice2);
auto slice3 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {24}}, {"ends", {36}}}), x);
auto transpose3 = m1.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), slice3);
m1.add_return({transpose1, transpose2, transpose3});
}
run_pass(m1);
migraphx::module m2;
{
auto x = m2.add_parameter("x", {migraphx::shape::float_type, {1, 384, 36, 64}});
auto transpose =
m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), x);
auto slice1 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {0}}, {"ends", {12}}}),
transpose);
auto slice2 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {12}}, {"ends", {24}}}),
transpose);
auto slice3 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {24}}, {"ends", {36}}}),
transpose);
m2.add_return({slice1, slice2, slice3});
}
EXPECT(m1 == m2);
}
TEST_CASE(transpose_slice_diff_perm)
{
migraphx::module m1;
{
auto x = m1.add_parameter("x", {migraphx::shape::float_type, {1, 384, 36, 64}});
auto slice1 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {0}}, {"ends", {12}}}), x);
auto transpose1 = m1.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), slice1);
auto slice2 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {12}}, {"ends", {24}}}), x);
auto transpose2 = m1.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 3, 1}}}), slice2);
auto slice3 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {24}}, {"ends", {36}}}), x);
auto transpose3 = m1.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), slice3);
m1.add_return({transpose1, transpose2, transpose3});
}
run_pass(m1);
migraphx::module m2;
{
auto x = m2.add_parameter("x", {migraphx::shape::float_type, {1, 384, 36, 64}});
auto transpose =
m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), x);
auto slice1 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {0}}, {"ends", {12}}}),
transpose);
auto slice2 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {12}}, {"ends", {24}}}),
transpose);
auto transpose2 = m2.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), slice2);
auto slice3 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {24}}, {"ends", {36}}}),
transpose);
m2.add_return({slice1, transpose2, slice3});
}
EXPECT(m1 == m2);
}
TEST_CASE(transpose_slice_single_transpose)
{
migraphx::module m1;
{
auto x = m1.add_parameter("x", {migraphx::shape::float_type, {1, 384, 36, 64}});
auto slice1 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {0}}, {"ends", {12}}}), x);
auto sqrt1 = m1.add_instruction(migraphx::make_op("sqrt"), slice1);
auto slice2 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {12}}, {"ends", {24}}}), x);
auto transpose = m1.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), slice2);
auto slice3 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {2}}, {"starts", {24}}, {"ends", {36}}}), x);
auto sqrt3 = m1.add_instruction(migraphx::make_op("sqrt"), slice3);
m1.add_return({sqrt1, transpose, sqrt3});
}
migraphx::module m2 = m1;
run_pass(m1);
EXPECT(m1 == m2);
}
int main(int argc, const char* argv[]) { test::run(argc, argv); } int main(int argc, const char* argv[]) { test::run(argc, argv); }
...@@ -30,6 +30,7 @@ ...@@ -30,6 +30,7 @@
#include <migraphx/ranges.hpp> #include <migraphx/ranges.hpp>
#include <migraphx/generate.hpp> #include <migraphx/generate.hpp>
#include <migraphx/load_save.hpp> #include <migraphx/load_save.hpp>
#include <migraphx/tmp_dir.hpp>
#include <migraphx/verify_args.hpp> #include <migraphx/verify_args.hpp>
#include <set> #include <set>
...@@ -57,6 +58,15 @@ std::future<typename std::result_of<Function()>::type> detach_async(Function&& f ...@@ -57,6 +58,15 @@ std::future<typename std::result_of<Function()>::type> detach_async(Function&& f
return std::async(std::launch::deferred, std::forward<Function>(f)); return std::async(std::launch::deferred, std::forward<Function>(f));
} }
inline void verify_load_save(const migraphx::program& p)
{
migraphx::tmp_dir td{"migraphx_test"};
auto path = td.path / "test.mxr";
migraphx::save(p, path.string());
auto loaded = migraphx::load(path.string());
EXPECT(p == loaded);
}
inline void compile_check(migraphx::program& p, const migraphx::target& t, bool show_trace = false) inline void compile_check(migraphx::program& p, const migraphx::target& t, bool show_trace = false)
{ {
auto name = t.name(); auto name = t.name();
...@@ -82,6 +92,8 @@ inline void compile_check(migraphx::program& p, const migraphx::target& t, bool ...@@ -82,6 +92,8 @@ inline void compile_check(migraphx::program& p, const migraphx::target& t, bool
throw std::runtime_error("Compiling program with " + name + " alters its shape"); throw std::runtime_error("Compiling program with " + name + " alters its shape");
} }
} }
if(t.name() != "ref")
verify_load_save(p);
} }
target_info run_verify::get_target_info(const std::string& name) const target_info run_verify::get_target_info(const std::string& name) const
...@@ -152,6 +164,7 @@ void run_verify::verify(const std::string& name, const migraphx::program& p) con ...@@ -152,6 +164,7 @@ void run_verify::verify(const std::string& name, const migraphx::program& p) con
auto_print::set_terminate_handler(name); auto_print::set_terminate_handler(name);
if(migraphx::enabled(MIGRAPHX_DUMP_TEST{})) if(migraphx::enabled(MIGRAPHX_DUMP_TEST{}))
migraphx::save(p, name + ".mxr"); migraphx::save(p, name + ".mxr");
verify_load_save(p);
std::vector<std::string> target_names; std::vector<std::string> target_names;
for(const auto& tname : migraphx::get_targets()) for(const auto& tname : migraphx::get_targets())
{ {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment