Commit 1af47f3e authored by Shucai Xiao's avatar Shucai Xiao
Browse files

Merge branch 'opt_log_softmax' into argmax_min

parents 099e9ce8 5384c7d7
......@@ -76,13 +76,13 @@ device_type<T>* device_cast(T* x)
}
template <class T>
T to_hip_type(T x)
__device__ __host__ T to_hip_type(T x)
{
return x;
}
// Hip doens't support __fp16
inline float to_hip_type(gpu_half x) { return x; }
inline __device__ __host__ float to_hip_type(gpu_half x) { return x; }
} // namespace device
} // namespace gpu
......
......@@ -30,41 +30,102 @@ argument logsoftmax(hipStream_t stream,
hip_tensor_descriptor<n_dim> desc_batch(batch_shape);
hip_tensor_descriptor<n_dim> desc_data(output_shape);
// each thread is for one item in the batch
gs_launch(stream, batch_shape.elements())([=](auto i) {
auto batch_idx = desc_batch.multi(i);
// use one block for items in one batch.
// opt 1, load all data to lds then use the same approach as
// the current optimization
const size_t block_size = 1024;
launch(
stream, batch_shape.elements() * block_size, block_size)([=](auto idx) __device__ {
size_t thr_idx = idx.local;
size_t blk_idx = idx.group;
using type = device_type<std::remove_cv_t<typename decltype(output)::value_type>>;
// all data can be loaded to the lds once, so all operations are
// done in lds
MIGRAPHX_DEVICE_SHARED type lds_data[block_size + 2];
auto batch_idx = desc_batch.multi(blk_idx);
auto data_idx = batch_idx;
// load data to lds and compute the batch max
size_t item_num = num_in_batch;
lds_data[block_size] = input_ptr[0];
for(size_t i = thr_idx; i < num_in_batch; i += block_size)
{
data_idx[axis] = i;
lds_data[i] = input_ptr[desc_data.linear(data_idx)];
__syncthreads();
auto size = (item_num > block_size) ? block_size : item_num;
auto stride = (size + 1) / 2;
while(true)
{
if(thr_idx + stride < size)
{
lds_data[thr_idx] = ::max(to_hip_type(lds_data[thr_idx]),
to_hip_type(lds_data[thr_idx + stride]));
}
__syncthreads();
size = stride;
stride = (stride + 1) / 2;
if(size == 1)
break;
}
// get max
auto batch_max = input_ptr[desc_data.linear(batch_idx)];
for(std::size_t j = 1; j < num_in_batch; ++j)
if(thr_idx == 0)
{
data_idx[axis] = j;
size_t idx = desc_data.linear(data_idx);
batch_max = std::max(to_hip_type(batch_max), to_hip_type(input_ptr[idx]));
lds_data[block_size] = (lds_data[0] < lds_data[block_size])
? lds_data[block_size]
: lds_data[0];
}
__syncthreads();
for(std::size_t j = 0; j < num_in_batch; ++j)
item_num -= block_size;
}
const size_t block_size1 = block_size + 1;
lds_data[block_size1] = 0;
item_num = num_in_batch;
for(size_t i = thr_idx; i < num_in_batch; i += block_size)
{
data_idx[axis] = i;
lds_data[i] = input_ptr[desc_data.linear(data_idx)] - lds_data[block_size];
lds_data[i] = ::exp(to_hip_type(lds_data[i]));
__syncthreads();
auto size = (item_num > block_size) ? block_size : item_num;
auto stride = (size + 1) / 2;
while(true)
{
data_idx[axis] = j;
size_t idx = desc_data.linear(data_idx);
output_ptr[idx] = input_ptr[idx] - batch_max;
if(thr_idx + stride < size)
{
lds_data[thr_idx] += lds_data[thr_idx + stride];
}
__syncthreads();
size = stride;
stride = (stride + 1) / 2;
if(size == 1)
break;
}
auto batch_sum = ::exp(to_hip_type(output_ptr[desc_data.linear(batch_idx)]));
for(std::size_t j = 1; j < num_in_batch; ++j)
if(thr_idx == 0)
{
data_idx[axis] = j;
size_t idx = desc_data.linear(data_idx);
batch_sum += ::exp(to_hip_type(output_ptr[idx]));
lds_data[block_size1] += lds_data[0];
}
__syncthreads();
item_num -= block_size;
}
batch_sum = ::log(to_hip_type(batch_sum));
for(std::size_t j = 0; j < num_in_batch; ++j)
auto log_batch_sum =
::log(to_hip_type(lds_data[block_size1])) + lds_data[block_size];
item_num = num_in_batch;
for(size_t i = thr_idx; i < num_in_batch; i += block_size)
{
data_idx[axis] = j;
size_t idx = desc_data.linear(data_idx);
output_ptr[idx] -= batch_sum;
data_idx[axis] = i;
size_t index = desc_data.linear(data_idx);
output_ptr[index] = input_ptr[index] - log_batch_sum;
}
});
});
......
......@@ -30,45 +30,98 @@ argument softmax(hipStream_t stream,
hip_tensor_descriptor<n_dim> desc_batch(batch_shape);
hip_tensor_descriptor<n_dim> desc_data(output_shape);
// each thread is for one item in the batch
gs_launch(stream, batch_shape.elements())([=](auto i) {
auto batch_idx = desc_batch.multi(i);
// use one block for items in one batch.
const size_t block_size = 1024;
launch(
stream, batch_shape.elements() * block_size, block_size)([=](auto idx) __device__ {
size_t thr_idx = idx.local;
size_t blk_idx = idx.group;
using type = device_type<std::remove_cv_t<typename decltype(output)::value_type>>;
// all data can be loaded to the lds once, so all operations are
// done in lds
MIGRAPHX_DEVICE_SHARED type lds_data[block_size + 2];
auto batch_idx = desc_batch.multi(blk_idx);
auto data_idx = batch_idx;
// get max
auto batch_max = input_ptr[desc_data.linear(batch_idx)];
for(std::size_t j = 1; j < n_dims; ++j)
// load data to lds and compute the batch max
size_t item_num = n_dims;
lds_data[block_size] = input_ptr[0];
for(size_t i = thr_idx; i < n_dims; i += block_size)
{
data_idx[axis] = i;
lds_data[i] = input_ptr[desc_data.linear(data_idx)];
__syncthreads();
auto size = (item_num > block_size) ? block_size : item_num;
auto stride = (size + 1) / 2;
while(true)
{
data_idx[axis] = j;
batch_max = std::max(to_hip_type(batch_max),
to_hip_type(input_ptr[desc_data.linear(data_idx)]));
if(thr_idx + stride < size)
{
lds_data[thr_idx] = ::max(to_hip_type(lds_data[thr_idx]),
to_hip_type(lds_data[thr_idx + stride]));
}
__syncthreads();
size = stride;
stride = (stride + 1) / 2;
if(size == 1)
break;
}
for(std::size_t j = 0; j < n_dims; ++j)
if(thr_idx == 0)
{
data_idx[axis] = j;
auto idx = desc_data.linear(data_idx);
output_ptr[idx] = input_ptr[idx] - batch_max;
lds_data[block_size] = (lds_data[0] < lds_data[block_size])
? lds_data[block_size]
: lds_data[0];
}
__syncthreads();
item_num -= block_size;
}
for(std::size_t j = 0; j < n_dims; ++j)
const size_t block_size1 = block_size + 1;
lds_data[block_size1] = 0;
item_num = n_dims;
for(size_t i = thr_idx; i < n_dims; i += block_size)
{
data_idx[axis] = i;
lds_data[i] = input_ptr[desc_data.linear(data_idx)] - lds_data[block_size];
lds_data[i] = ::exp(to_hip_type(lds_data[i]));
__syncthreads();
auto size = (item_num > block_size) ? block_size : item_num;
auto stride = (size + 1) / 2;
while(true)
{
data_idx[axis] = j;
auto idx = desc_data.linear(data_idx);
output_ptr[idx] = exp(to_hip_type(output_ptr[idx]));
if(thr_idx + stride < size)
{
lds_data[thr_idx] += lds_data[thr_idx + stride];
}
__syncthreads();
size = stride;
stride = (stride + 1) / 2;
if(size == 1)
break;
}
auto batch_sum = output_ptr[desc_data.linear(batch_idx)];
for(std::size_t j = 1; j < n_dims; ++j)
if(thr_idx == 0)
{
data_idx[axis] = j;
batch_sum += output_ptr[desc_data.linear(data_idx)];
lds_data[block_size1] += lds_data[0];
}
__syncthreads();
item_num -= block_size;
}
for(std::size_t j = 0; j < n_dims; ++j)
for(size_t i = thr_idx; i < n_dims; i += block_size)
{
data_idx[axis] = j;
auto idx = desc_data.linear(data_idx);
output_ptr[idx] = output_ptr[idx] / batch_sum;
data_idx[axis] = i;
size_t index = desc_data.linear(data_idx);
auto val = input_ptr[index] - lds_data[block_size];
output_ptr[index] = ::exp(to_hip_type(val)) / lds_data[block_size1];
}
});
});
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment