Unverified Commit 1530ec24 authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'develop' into add_parity_check_ci

parents 5c98fcb0 c2e01b10
......@@ -58,6 +58,8 @@ struct hiprtc_src_file
}
};
MIGRAPHX_GPU_EXPORT bool hip_has_flags(const std::vector<std::string>& flags);
MIGRAPHX_GPU_EXPORT std::vector<std::vector<char>> compile_hip_src_with_hiprtc(
std::vector<hiprtc_src_file> srcs, std::string params, const std::string& arch);
......
......@@ -32,6 +32,7 @@
#include <migraphx/instruction.hpp>
#include <migraphx/optional.hpp>
#include <migraphx/rank.hpp>
#include <migraphx/gpu/tuning_config.hpp>
#include <functional>
namespace migraphx {
......@@ -68,12 +69,6 @@ struct compiler_replace
}
};
struct tuning_config
{
value problem;
std::vector<value> solutions;
};
using compiler_compile =
std::function<compiler_replace(context&, instruction_ref, operation, const value&)>;
using compiler_compile_op =
......
......@@ -46,13 +46,7 @@ using hip_event_ptr = MIGRAPHX_MANAGE_PTR(hipEvent_t, hipEventDestroy);
struct hip_device
{
hip_device()
{
device_props.gcnArchName[0] = '\0';
device_props.gcnArch = 0;
device_props.multiProcessorCount = 0;
add_stream();
}
hip_device() : device_props{} { add_stream(); }
hip_device(std::size_t id, std::size_t n) : device_id(id)
{
......@@ -171,7 +165,7 @@ struct hip_device
std::size_t stream_id() const { return current_stream; }
std::string get_device_name() const { return get_arch_name(device_props); }
std::string get_device_name() const { return device_props.gcnArchName; }
std::string get_gfx_name() const { return trim(split_string(get_device_name(), ':').front()); }
......
......@@ -84,8 +84,10 @@ struct miopen_convolution
{
check_shapes{inputs, op}.has(4);
std::vector<shape> conv_inputs(inputs.begin(), inputs.begin() + 2);
check_shapes{conv_inputs, *this}.max_ndims(5).packed_layouts(
{{0, 1, 2}, {0, 1, 2, 3}, {0, 2, 3, 1}, {0, 1, 2, 3, 4}});
check_shapes{conv_inputs, *this}
.max_ndims(5)
.packed_layouts({{0, 1, 2}, {0, 1, 2, 3}, {0, 2, 3, 1}, {0, 1, 2, 3, 4}})
.same_layout();
return migraphx::compute_shape<Op>(op, conv_inputs);
}
......
......@@ -33,8 +33,6 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
MIGRAPHX_GPU_EXPORT std::string get_arch_name(const hipDeviceProp_t& props);
MIGRAPHX_GPU_EXPORT std::string get_device_name();
MIGRAPHX_GPU_EXPORT int get_device_id();
......
......@@ -92,7 +92,7 @@ struct hip_sync_stream
return inputs.front();
}
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
argument compute(const context& ctx, const shape&, const std::vector<argument>& args) const
{
gpu_sync(ctx);
if(args.empty())
......
......@@ -29,6 +29,7 @@
#include <migraphx/gpu/config.hpp>
#include <migraphx/gpu/code_object_op.hpp>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/gpu/tuning_config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -36,16 +37,21 @@ struct module;
namespace gpu {
MIGRAPHX_GPU_EXPORT std::string dump_mlir(const module& m);
MIGRAPHX_GPU_EXPORT code_object_op compile_mlir(const context& ctx,
MIGRAPHX_GPU_EXPORT code_object_op compile_mlir(const context& migraphx_ctx,
module m,
const std::vector<instruction_ref>& inputs);
const std::vector<instruction_ref>& inputs,
const value& solution);
MIGRAPHX_GPU_EXPORT instruction_ref insert_mlir(module& m,
instruction_ref ins,
code_object_op co,
const std::vector<instruction_ref>& inputs);
MIGRAPHX_GPU_EXPORT tuning_config get_tuning_config_mlir(const context& migraphx_ctx,
module m,
const std::vector<shape>& inputs,
bool exhaustive);
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_GPU_TUNING_CONFIG_HPP
#define MIGRAPHX_GUARD_GPU_TUNING_CONFIG_HPP
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct tuning_config
{
value problem;
std::vector<value> solutions;
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_GPU_TUNING_CONFIG_HPP
......@@ -300,7 +300,8 @@ struct ck_gemm_compiler : compiler<ck_gemm_compiler>
const auto& b_shape = inputs[1];
const auto& c_shape = inputs.back();
auto rank = a_shape.lens().size();
// cppcheck-suppress unreadVariable
auto rank = a_shape.ndim();
auto batch_count = get_batch_count(c_shape);
auto m = c_shape.lens()[rank - 2];
......
......@@ -36,11 +36,12 @@ struct mlir_compiler : compiler<mlir_compiler>
operation compile_op(context&, const std::vector<shape>&, const value&) const { return {}; }
compiler_replace compile(context& ctx, instruction_ref ins, const operation&) const
compiler_replace
compile(const context& ctx, instruction_ref ins, const operation&, const value& solution) const
{
auto* smod = ins->module_inputs().front();
assert(smod->get_parameter_names().size() == ins->inputs().size() - 1);
return insert(compile_mlir(ctx, *smod, ins->inputs()));
return insert(compile_mlir(ctx, *smod, ins->inputs(), solution));
}
compiler_replace insert(code_object_op co) const
......@@ -50,6 +51,16 @@ struct mlir_compiler : compiler<mlir_compiler>
m.replace_instruction(ins, mlir);
}};
}
optional<tuning_config> get_tuning_config(const context& ctx,
instruction_ref ins,
const operation&,
bool exhaustive) const
{
auto shapes = to_shapes(ins->inputs());
auto* smod = ins->module_inputs().front();
return get_tuning_config_mlir(ctx, *smod, shapes, exhaustive);
}
};
} // namespace gpu
......
......@@ -72,7 +72,7 @@ struct pointwise_compiler : compiler<pointwise_compiler>
hip_compile_options options;
options.inputs = inputs;
options.output = inputs.back();
options.virtual_inputs = reduce_dims(inputs);
options.virtual_inputs = reduce_dims(normalize_permutation(inputs));
options.params = "-Wno-float-equal";
auto axis = find_fast_axis(options.virtual_inputs);
auto vec = vectorize::elements(ctx, axis, options.virtual_inputs);
......
......@@ -84,7 +84,7 @@ static shape get_reduced_shape(const shape& s, const std::vector<T>& axes)
std::fill(lens.begin(), lens.end(), 1);
for(const auto& axis : axes)
lens[axis] = s.lens()[axis];
return shape{s.type(), lens};
return s.with_lens(lens);
}
template <class T>
......@@ -93,7 +93,7 @@ static shape get_output_shape(const shape& s, const std::vector<T>& axes)
auto lens = s.lens();
for(const auto& axis : axes)
lens[axis] = 1;
return shape{s.type(), lens};
return s.with_lens(lens);
}
template <class ReduceLens>
......@@ -228,7 +228,7 @@ struct fused_reduce_compiler : compiler<fused_reduce_compiler>
auto virtual_inputs = inputs;
virtual_inputs.push_back(get_reduced_shape(inputs.front(), axes));
virtual_inputs.push_back(get_output_shape(inputs.front(), axes));
virtual_inputs = reduce_dims(virtual_inputs);
virtual_inputs = reduce_dims(normalize_permutation(virtual_inputs));
auto reduce_output_shape = virtual_inputs.back();
virtual_inputs.pop_back();
auto reduction_shape = virtual_inputs.back();
......
......@@ -22,6 +22,7 @@
* THE SOFTWARE.
*/
#include "migraphx/make_op.hpp"
#include <migraphx/stringutils.hpp>
#include <migraphx/gpu/mlir.hpp>
#ifdef MIGRAPHX_MLIR
......@@ -36,7 +37,10 @@
#include <mutex>
#if !defined(MLIR_MIGRAPHX_DIALECT_API_VERSION) || MLIR_MIGRAPHX_DIALECT_API_VERSION != 3
#warning "Incompatible version of rocMLIR library used, disabling"
// Only undefine when not using cppcheck
#ifndef CPPCHECK
#undef MIGRAPHX_MLIR
#endif
#else
#include <mlir-c/RegisterRocMLIR.h>
#endif
......@@ -50,8 +54,10 @@
#include <migraphx/ranges.hpp>
#include <migraphx/gpu/code_object_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/gpu/perfdb.hpp>
#include <migraphx/gpu/tuning_config.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/permutation.hpp>
#include <deque>
......@@ -64,6 +70,7 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_MLIR);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_TUNE_EXHAUSTIVE);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_TUNING_DB);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_TUNING_CFG);
......@@ -88,6 +95,8 @@ struct mlir_handle
friend bool operator==(ptr x, ptr y) { return x.get_value() == y.get_value(); }
friend bool operator!=(ptr x, ptr y) { return not(x == y); }
explicit operator bool() const noexcept { return obj != ptr(); }
T obj{};
};
......@@ -134,6 +143,10 @@ using mlir_block = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirBlock, mlirBlockD
using mlir_pass_manager = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirPassManager, mlirPassManagerDestroy);
using mlir_tuning_table = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirRockTuningTable,
mlirRockTuningTableDestroy);
using mlir_tuning_space = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirRockTuningSpace,
mlirRockTuningSpaceDestroy);
using mlir_tuning_param = MIGRAPHX_MANAGE_MLIR_HANDLE(MlirRockTuningParam,
mlirRockTuningParamDestroy);
std::string_view to_string_view(MlirStringRef s) { return {s.data, s.length}; }
......@@ -167,12 +180,6 @@ std::string mlir_print(F f, T x)
return ss.str();
}
bool has_xdlops(const std::string& target_arch)
{
const auto device_name = trim(split_string(target_arch, ':').front());
return (starts_with(device_name, "gfx9") and device_name >= "gfx908");
}
struct mlir_program
{
mlir_program()
......@@ -507,7 +514,8 @@ struct mlir_program
ops.add_attributes({{"function_type", make_function_type(inputs, outputs)},
{"sym_name", sym_name},
{"kernel", std::string("mixr")},
{"arch", target_arch}});
{"arch", target_arch},
{"num_cu", num_cu}});
ops.add_region(std::move(region));
insert(body, std::move(ops));
......@@ -554,14 +562,7 @@ struct mlir_program
static std::string get_symbol_name(const module& m)
{
for(auto ins : iterator_for(m))
{
if(ins->name() == "convolution" or ins->name() == "dot")
{
return "mlir_" + ins->name();
}
}
return "main";
return "mlir_" + gen::generate_name_from_ops(m);
}
void parse(const module& m)
......@@ -597,9 +598,6 @@ struct mlir_program
{
pp =
problem_params{ins->get_operator(), to_shapes(ins->inputs()), ins->get_shape()};
// check if HW supports xdlops
if(has_xdlops(target_arch))
ops.add_attributes({{"xdlopsV2", true}});
}
std::vector<MlirValue> inputs;
......@@ -616,18 +614,30 @@ struct mlir_program
}
}
code_object_op compile() MIGRAPHX_TIDY_CONST
void run_high_level_pipeline() MIGRAPHX_TIDY_CONST
{
mlir_pass_manager pm_front{mlirPassManagerCreate(ctx.get())};
mlir_pass_manager pm_back{mlirPassManagerCreate(ctx.get())};
// 1st pipeline to call
mlirMIGraphXAddHighLevelPipeline(pm_front.get());
mlirPassManagerRunOnOp(pm_front.get(), mlirModuleGetOperation(mmodule.get()));
}
// 2nd pipeline to call
get_module_tuned();
void run_backend_pipeline() MIGRAPHX_TIDY_CONST
{
mlir_pass_manager pm_back{mlirPassManagerCreate(ctx.get())};
mlirMIGraphXAddBackendPipeline(pm_back.get(), target_arch.c_str());
mlirPassManagerRunOnOp(pm_back.get(), mlirModuleGetOperation(mmodule.get()));
}
code_object_op compile(const value& solution) MIGRAPHX_TIDY_CONST
{
// 1st pipeline to call
run_high_level_pipeline();
if(solution.is_null())
get_module_tuned();
else
set_tuning(solution);
// 2nd pipeline to call
run_backend_pipeline();
code_object_op op{};
op.symbol_name = sym_name;
......@@ -636,7 +646,12 @@ struct mlir_program
return op;
}
void find_target() { target_arch = get_device_name(); }
void set_gpu_properties(const context& migraphx_ctx)
{
const auto& device = migraphx_ctx.get_current_device();
target_arch = device.get_device_name();
num_cu = device.get_cu_count();
}
std::pair<std::size_t, std::size_t> get_launch_params() const
{
......@@ -650,7 +665,7 @@ struct mlir_program
value::binary get_binary() const
{
int size = 0;
size_t size = 0;
mlirGetBinary(mmodule.get(), &size, nullptr);
value::binary result(size);
if(mlirGetBinary(mmodule.get(), &size, reinterpret_cast<char*>(result.data())))
......@@ -658,17 +673,59 @@ struct mlir_program
MIGRAPHX_THROW("Failed to compile mlir program");
}
void set_tuning(const value& v) MIGRAPHX_TIDY_CONST
{
const auto* str = v.if_string();
if(str == nullptr)
MIGRAPHX_THROW("mlir tuning solutions must be strings");
if(not mlirRockTuningSetFromStr(mmodule.get(), make_mlir_string_ref(*str)))
MIGRAPHX_THROW("Failed setting tuning key: " + *str);
}
tuning_config get_tuning_config(bool exhaustive) MIGRAPHX_TIDY_CONST
{
tuning_config tc;
run_high_level_pipeline();
auto tuning_mode =
exhaustive ? RocmlirTuningParamSetKindFull : RocmlirTuningParamSetKindQuick;
if(enabled(MIGRAPHX_MLIR_TUNE_EXHAUSTIVE{}))
tuning_mode = RocmlirTuningParamSetKindExhaustive;
mlir_tuning_space params{mlirRockTuningSpaceCreate(mmodule.get(), tuning_mode)};
for(auto i : range(mlirRockTuningGetNumParams(params.get())))
{
mlir_tuning_param param{mlirRockTuningParamCreate()};
if(not mlirRockTuningParamGet(params.get(), i, param.get()))
MIGRAPHX_THROW("Incorrect mlir tuning parameter: " + std::to_string(i));
std::array<char, ROCMLIR_TUNING_KEY_BUFSZ> perf_key;
size_t perf_key_bytes =
mlirRockTuningParamToString(param.get(), perf_key.data(), perf_key.size());
if(perf_key_bytes > perf_key.size())
MIGRAPHX_THROW("Tuning perf key was " + std::to_string(perf_key_bytes) +
" bytes and thus too long");
tc.solutions.emplace_back(perf_key.begin(), perf_key.begin() + perf_key_bytes);
}
std::array<char, ROCMLIR_TUNING_KEY_BUFSZ> tuning_key;
size_t tuning_key_bytes =
mlirRockTuningGetKey(mmodule.get(), tuning_key.data(), tuning_key.size());
if(tuning_key_bytes > tuning_key.size())
MIGRAPHX_THROW("Tuning table key was " + std::to_string(tuning_key_bytes) +
" bytes and thus too long");
tc.problem = std::string(tuning_key.begin(), tuning_key.begin() + tuning_key_bytes);
return tc;
}
std::string get_tune_params(bool xdlops) const { return get_mlir_perf_for_conv(pp, xdlops); }
// This function appends to tuning cfg file that could be
// used with rocMLIR tuning scripts.
void dump_tuning_cfg(const char* prob_config) const
void dump_tuning_cfg(const std::string& prob_config) const
{
std::string tuning_cfg_path = string_value_of(MIGRAPHX_MLIR_TUNING_CFG{});
if(!tuning_cfg_path.empty())
if(not tuning_cfg_path.empty())
{
std::vector<std::string> tokens = split_string(prob_config, '\t');
std::string prob = tokens[1];
std::string prob = tokens[2];
if(starts_with(prob, "conv"))
{
tuning_cfg_path += ".conv";
......@@ -678,55 +735,72 @@ struct mlir_program
tuning_cfg_path += ".gemm";
}
std::ofstream tuning_cfg(tuning_cfg_path, std::ios::app);
prob =
trim(prob, [](unsigned char c) { return (c == '\0') or (std::isspace(c) != 0); });
tuning_cfg << prob << std::endl;
}
}
static mlir_tuning_table create_tuning_table()
static std::pair<mlir_tuning_table, bool> load_tuning_table()
{
mlir_tuning_table tuning_table{mlirRockTuningTableCreate()};
bool found_table = false;
std::string tuning_db_path = string_value_of(MIGRAPHX_MLIR_TUNING_DB{});
if(!tuning_db_path.empty())
if(not tuning_db_path.empty())
{
std::ifstream tuning_db_tsv(tuning_db_path);
if(tuning_db_tsv)
{
found_table = true;
std::string line;
while(std::getline(tuning_db_tsv, line))
{
std::vector<std::string> tokens = split_string(line, '\t');
std::string arch = tokens[0];
std::string prob = tokens[1];
std::string perf = tokens[2];
std::string key = arch.append("\t").append(prob);
mlirRockTuningUpdateTable(tuning_table.get(), key.c_str(), perf.c_str(), 1.0);
std::string num_cu = tokens[1];
std::string prob = tokens[2];
std::string perf = tokens[3];
std::string key = arch.append("\t").append(num_cu).append("\t").append(prob);
mlirRockTuningUpdateTable(tuning_table.get(),
make_mlir_string_ref(key),
make_mlir_string_ref(perf),
1.0);
}
}
}
else
{
found_table = false;
std::cerr
<< "WARNING: MLIR tuning db not found. Please set MIGRAPHX_MLIR_TUNING_DB for "
"optimal performance."
<< std::endl;
}
return tuning_table;
return std::make_pair(std::move(tuning_table), found_table);
}
bool get_module_tuned() const
{
static mlir_tuning_table tuning_table = create_tuning_table();
// The tuning table as currently implemented is currently not
// thread safe. This will be fixed in the future. For now,
// stick a mutex around all tuning table interaction.
static std::mutex lock;
std::lock_guard<std::mutex> guard(lock);
if(!mlirRockTuningSetFromTable(tuning_table.get(), mmodule.get()))
{
const char* prob_config = mlirRockTuningGetKey(tuning_table.get(), mmodule.get());
std::stringstream key(prob_config);
std::cerr << "fails to set param on" << prob_config << std::endl;
dump_tuning_cfg(prob_config);
static std::pair<mlir_tuning_table, bool> tuning_table = load_tuning_table();
if(not mlirRockTuningSetFromTable(tuning_table.first.get(), mmodule.get()))
{
std::array<char, ROCMLIR_TUNING_KEY_BUFSZ> prob_config;
size_t prob_config_bytes =
mlirRockTuningGetKey(mmodule.get(), prob_config.data(), prob_config.size());
if(prob_config_bytes >= prob_config.size())
{
std::cerr << "MLIR tuning key overflowed buffer, needed " << prob_config_bytes
<< " bytes" << std::endl;
return false;
}
std::string prob_config_str(prob_config.begin(),
prob_config.begin() + prob_config_bytes);
if(tuning_table.second)
{
std::cerr << "NOTE: MLIR tuning table did not include a key for " << prob_config_str
<< std::endl;
}
dump_tuning_cfg(prob_config_str);
return false;
}
return true;
......@@ -737,7 +811,8 @@ struct mlir_program
mlir_module mmodule;
problem_params pp;
std::deque<std::string> strings{};
std::string target_arch;
std::string target_arch = "";
std::size_t num_cu = 0;
std::string sym_name;
};
......@@ -749,14 +824,14 @@ std::string dump_mlir(const module& m)
return mlir_print(&mlirOperationPrint, mod_op);
}
void adjust_param_shapes(module& m, const std::vector<instruction_ref>& inputs)
void adjust_param_shapes(module& m, const std::vector<shape>& inputs)
{
auto names = m.get_parameter_names();
std::sort(names.begin(), names.end());
for(auto i : range(names.size()))
{
const auto& name = names[i];
const auto& input = inputs[i]->get_shape();
const auto& input = inputs[i];
auto param = m.get_parameter(name);
if(input.standard())
continue;
......@@ -794,21 +869,32 @@ void adjust_param_shapes(module& m, const std::vector<instruction_ref>& inputs)
}
}
code_object_op compile_mlir(const context&, module m, const std::vector<instruction_ref>& inputs)
code_object_op compile_mlir(const context& migraphx_ctx,
module m,
const std::vector<instruction_ref>& inputs,
const value& solution)
{
adjust_param_shapes(m, inputs);
adjust_param_shapes(m, to_shapes(inputs));
const bool trace = enabled(MIGRAPHX_TRACE_MLIR{});
static std::mutex mutex;
if(trace)
{
const std::lock_guard<std::mutex> lock(mutex);
std::cout << m << std::endl;
}
mlir_program mp;
mp.find_target();
mp.set_gpu_properties(migraphx_ctx);
mp.parse(m);
auto mod_op = mlirModuleGetOperation(mp.mmodule.get());
if(trace)
{
const std::lock_guard<std::mutex> lock(mutex);
std::cout << mlir_print(&mlirOperationPrint, mod_op) << std::endl;
auto co = mp.compile();
}
auto co = mp.compile(solution);
co.expected_inputs = to_shapes(inputs);
co.output = m.get_output_shapes().front();
return co;
}
......@@ -829,6 +915,19 @@ instruction_ref insert_mlir(module& m,
return m.insert_instruction(ins, co, refs);
}
tuning_config get_tuning_config_mlir(const context& migraphx_ctx,
module m,
const std::vector<shape>& inputs,
bool exhaustive)
{
adjust_param_shapes(m, inputs);
mlir_program mp;
mp.set_gpu_properties(migraphx_ctx);
mp.parse(m);
return mp.get_tuning_config(exhaustive);
}
#else
std::string dump_mlir(const module&) { return {}; }
......@@ -840,20 +939,27 @@ void use(T&)
// Disabling clang-tidy warning on non-real useage.
// NOLINTBEGIN(performance-unnecessary-value-param)
code_object_op compile_mlir(const context&, module, const std::vector<instruction_ref>&)
code_object_op
compile_mlir(const context&, module, const std::vector<instruction_ref>&, const value&)
{
return {};
}
// NOLINTEND(performance-unnecessary-value-param)
instruction_ref
// cppcheck-suppress funcArgNamesDifferent
insert_mlir(module& m, instruction_ref, code_object_op co, const std::vector<instruction_ref>&)
{
use(co);
use(m);
return m.end();
}
tuning_config get_tuning_config_mlir(const context&, module, const std::vector<shape>&, bool)
{
return {};
}
// NOLINTEND(performance-unnecessary-value-param)
#endif
} // namespace gpu
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifdef __HIP_DEVICE_COMPILE__
#error \
"Device compilation not allowed for migraphx_gpu. Do not link with hip::device. Device code should go into migraphx_device or migraphx_kernels"
#endif
......@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/permutation.hpp>
#include <migraphx/gpu/prefuse_ops.hpp>
#include <migraphx/match/layernorm.hpp>
#include <migraphx/check_shapes.hpp>
......@@ -45,40 +46,42 @@ struct layernorm_base
}
shape compute_shape(std::vector<shape> inputs, std::vector<module_ref> mods) const
{
std::size_t nargs = 1;
std::size_t nargs = N;
if(not mods.empty())
{
auto* pm = mods.front();
nargs = pm->get_parameter_names().size();
nargs += pm->get_parameter_names().size() - 1;
}
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(nargs + N);
auto s = inputs.at(0);
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(nargs);
auto s = inputs.front();
auto t = s.type();
if(not mods.empty())
t = mods.front()->get_output_shapes().front().type();
if(s.scalar())
{
return s;
}
else if(s.broadcasted())
{
return {t, s.lens()};
}
else
{
return s.with_lens(t, s.lens());
}
// Scalar output if all inputs are scalar
if(inputs.front().elements() == 1 and
all_of(inputs, [](const auto& ss) { return ss.scalar(); }))
return inputs.front();
auto l_s = shape::from_permutation(
t, s.lens(), find_permutation(std::vector<shape>(inputs.begin(), inputs.begin() + N)));
// just prelayernorm or preadd_layernorm
if(nargs <= N)
return l_s;
// else, layernorm + pointwise fusion, preserve layout of fused op
std::vector<shape> lp_s(inputs.begin() + N, inputs.end());
lp_s.insert(lp_s.begin(), l_s);
return shape::from_permutation(t, s.lens(), find_permutation(lp_s));
}
};
struct layernorm : layernorm_base<layernorm, 0>
struct layernorm : layernorm_base<layernorm, 1>
{
std::string name() const { return "gpu::prelayernorm"; }
};
MIGRAPHX_REGISTER_OP(layernorm);
struct add_layernorm : layernorm_base<add_layernorm, 1>
struct add_layernorm : layernorm_base<add_layernorm, 2>
{
std::string name() const { return "gpu::preadd_layernorm"; }
};
......
......@@ -75,7 +75,9 @@ namespace gpu {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_SCHEDULE_PASS)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_REDUCE_FUSION)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_NHWC)
#ifndef _WIN32
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_CK)
#endif
struct id_pass
{
......@@ -136,7 +138,9 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{},
enable_pass(not enabled(MIGRAPHX_DISABLE_REDUCE_FUSION{}), fuse_reduce{}),
dead_code_elimination{},
#ifndef _WIN32
enable_pass(enabled(MIGRAPHX_ENABLE_CK{}), fuse_ck{}),
#endif
dead_code_elimination{},
enable_pass(mlir_enabled(), fuse_mlir{&ctx}),
dead_code_elimination{},
......
......@@ -34,7 +34,7 @@ namespace gpu {
std::vector<argument> generate_arguments(const std::vector<shape>& shapes, unsigned long seed = 0)
{
std::vector<argument> args;
std::transform(shapes.begin(), shapes.end(), std::back_inserter(args), [&](auto& s) {
std::transform(shapes.begin(), shapes.end(), std::back_inserter(args), [&](const auto& s) {
return to_gpu(generate_argument(s, seed++));
});
return args;
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......
......@@ -338,7 +338,7 @@ void tf_parser::parse_node(const std::string& name)
std::string input_name = input;
// if input has trailing `:0` index then remove it
auto multi_out_idx = input.find(':');
if(multi_out_idx != std::string::npos && input.substr(multi_out_idx + 1) == "0")
if(multi_out_idx != std::string::npos and input.substr(multi_out_idx + 1) == "0")
{
input_name = input.substr(0, multi_out_idx);
}
......
......@@ -285,7 +285,7 @@ bool value::contains(const std::string& pkey) const
}
std::size_t value::size() const
{
auto* a = if_array_impl(x);
const auto* a = if_array_impl(x);
if(a == nullptr)
return 0;
return a->size();
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment