Commit 14329696 authored by turneram's avatar turneram
Browse files

Merge remote-tracking branch 'origin/develop' into rewrite-fast-gelu

parents a48c41a9 79e15ca9
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
using namespace migraphx::gpu::gen; // NOLINT
static const char* const layernorm_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/layernorm.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <migraphx/kernels/preload.hpp>
#include <args.hpp>
namespace migraphx {
${preamble}
extern "C" {
__global__ void ${kernel}(${params})
{
auto idx = make_index();
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto... xs) {
${layernorm}<${axis}>(${post}, xs...);
});
}
}
} // namespace migraphx
)__migraphx__";
struct layernorm_compiler : compiler<layernorm_compiler>
{
std::vector<std::string> names() const
{
return {"layernorm", "gpu::prelayernorm", "gpu::preadd_layernorm"};
}
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
// TODO: Use reduce_dims
auto axis = inputs.front().lens().size() - 1;
auto faxis = find_fast_axis({inputs.front()});
vectorize vec{};
// Vectorize if the axis is a reduction axis
if(axis == faxis)
{
vec = vectorize::elements(faxis, inputs);
}
auto preloads = preload::broadcasts(axis, inputs);
auto relements = inputs[0].lens()[axis] / vec.size;
auto nelements = (inputs.back().elements() / inputs[0].lens()[axis]);
auto block_size = compute_block_size(relements, 256);
hip_compile_options options;
options.set_launch_params(
v, compute_global_for(ctx, nelements * block_size, 256), block_size);
options.output = inputs.back();
options.inputs = inputs;
options.kernel_name = v.get("kernel", "layernorm_kernel");
auto src = interpolate_string(layernorm_kernel,
{{"kernel", options.kernel_name},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"transformers", make_transformer_args(preloads, vec)},
{"post", v.get("post", std::string{"op::id{}"})},
{"preamble", v.get("preamble", std::string{})},
{"layernorm", v.get("layernorm", std::string{"layernorm"})},
{"axis", to_string(axis)}});
return compile_hip_code_object(src, options);
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
auto v = op.to_value();
v["layernorm"] = "layernorm";
v["kernel"] = "layernorm_kernel";
if(op.name() == "gpu::preadd_layernorm")
{
v["layernorm"] = "add_layernorm";
v["kernel"] = "add_layernorm_kernel";
}
if(not ins->module_inputs().empty())
{
auto* pm = ins->module_inputs().front();
v["preamble"] = generate_pointwise(*pm, "post_layernorm");
v["post"] = "MIGRAPHX_LIFT(post_layernorm)";
v["kernel"] =
v["layernorm"].to<std::string>() + "_" + generate_name_from_ops(*pm) + "_kernel";
}
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -65,18 +65,6 @@ __global__ void ${kernel}(${params}) ...@@ -65,18 +65,6 @@ __global__ void ${kernel}(${params})
)__migraphx__"; )__migraphx__";
static std::vector<std::string> get_op_names(const module& m)
{
std::vector<std::string> result;
for(auto& ins : m)
{
if(starts_with(ins.name(), "@"))
continue;
result.push_back(ins.name());
}
return result;
}
struct pointwise_compiler : compiler<pointwise_compiler> struct pointwise_compiler : compiler<pointwise_compiler>
{ {
std::vector<std::string> names() const { return {"pointwise", "contiguous"}; } std::vector<std::string> names() const { return {"pointwise", "contiguous"}; }
...@@ -127,33 +115,13 @@ struct pointwise_compiler : compiler<pointwise_compiler> ...@@ -127,33 +115,13 @@ struct pointwise_compiler : compiler<pointwise_compiler>
{ {
assert(not ins->module_inputs().empty()); assert(not ins->module_inputs().empty());
auto* pm = ins->module_inputs().front(); auto* pm = ins->module_inputs().front();
run_passes(*pm, {eliminate_common_subexpression{}, dead_code_elimination{}}); auto pf = generate_pointwise(*pm, "inner_pointwise");
cpp_generator g; std::string lambda = "MIGRAPHX_LIFT(inner_pointwise)";
g.fmap([](const std::string& fname) { return "migraphx::" + fname; }); auto kernel_name = generate_name_from_ops(*pm) + "_kernel";
g.add_point_op("where", "${function:where}(${0}, ${1}, ${2})"); return replace(
g.add_point_op("prelu", "${function:where}(${0} < 0, ${0} * ${1}, ${0})"); compile_op(ctx,
g.add_point_op("sign",
"${function:where}(${0} > 0, 1, ${function:where}(${0} < 0, -1, 0))");
g.add_point_op("equal", "migraphx::abs(${0} == ${1})");
g.add_point_op("less", "migraphx::abs(${0} < ${1})");
g.add_point_op("greater", "migraphx::abs(${0} > ${1})");
g.add_point_op("not", "migraphx::abs(not ${0})");
g.add_point_op("mod", "migraphx::mod(${0}, ${1})");
g.add_point_op("fmod", "migraphx::fmod(${0}, ${1})");
// Add explict conversions
g.fresult([](const shape& s) {
return "migraphx::convert<" + shape::cpp_type(s.type()) + ">";
});
auto name = g.create_function(
g.generate_module(*pm).set_attributes({"__device__"}).set_generic_types(*pm));
std::string lambda = "MIGRAPHX_LIFT(" + name + ")";
auto op_names = get_op_names(*pm);
op_names.push_back("kernel");
auto op_name_string = join_strings(op_names, "_");
return replace(compile_op(
ctx,
to_shapes(ins->inputs()), to_shapes(ins->inputs()),
{{"lambda", lambda}, {"preamble", g.str()}, {"kernel", op_name_string}})); {{"lambda", lambda}, {"preamble", pf}, {"kernel", kernel_name}}));
} }
} }
}; };
......
...@@ -32,7 +32,8 @@ ...@@ -32,7 +32,8 @@
// NOLINTNEXTLINE // NOLINTNEXTLINE
#define MIGRAPHX_LIFT(...) \ #define MIGRAPHX_LIFT(...) \
[](auto&&... xs) MIGRAPHX_RETURNS((__VA_ARGS__)(static_cast<decltype(xs)>(xs)...)) [](auto&&... private_lisft_xs) MIGRAPHX_RETURNS( \
(__VA_ARGS__)(static_cast<decltype(private_lisft_xs)>(private_lisft_xs)...))
namespace migraphx { namespace migraphx {
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
#define MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
#include <migraphx/kernels/reduce.hpp>
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/print.hpp>
namespace migraphx {
template <index_int Axis,
class F,
class BinOp,
class Output,
class Input1,
class Input2,
class... Inputs>
__device__ void generic_binary_layernorm(
F compute, BinOp op, Output output, Input1 input1, Input2 input2, Inputs... inputs)
{
using reduce_output = reduce::with_axis<Input1, Axis>;
reduce::block::run<reduce_output>([&](auto, auto r) {
using value_type = typename Input1::type;
constexpr auto relements = r.template elements<Input1>();
auto mean = [&](auto f) {
return r.reduce(op::sum{}, 0, [&](auto x1, auto x2) {
return f(x1, x2) / value_type{relements};
})(input1, input2);
};
// mean(x)
auto mean_x = mean(op);
// mean(m ^ 2)
auto mean_m2 = mean([&](auto x1, auto x2) {
auto m = op(x1, x2) - mean_x;
return m * m;
});
r.inner([&](auto& y, auto x1, auto x2, auto... xs) {
auto m = op(x1, x2) - mean_x;
// m * rsqrt(mean(m ^ 2) + 1e-12)
y = compute(m * rsqrt(mean_m2 + value_type{1e-12}), xs...);
})(output, input1, input2, inputs...);
});
}
template <index_int Axis, class F, class Output, class Input, class... Inputs>
__device__ void layernorm(F compute, Output output, Input input, Inputs... inputs)
{
generic_binary_layernorm<Axis>(
compute, [](auto x, auto) { return x; }, output, input, input, inputs...);
}
template <index_int Axis, class F, class Output, class Input1, class Input2, class... Inputs>
__device__ void
add_layernorm(F compute, Output output, Input1 input1, Input2 input2, Inputs... inputs)
{
generic_binary_layernorm<Axis>(
compute, [](auto x1, auto x2) { return x1 + x2; }, output, input1, input2, inputs...);
}
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
...@@ -224,6 +224,18 @@ struct block ...@@ -224,6 +224,18 @@ struct block
idx.local_stride(x.get_shape().elements(), [&](auto j) { f(x[j], xs[j]...); }); idx.local_stride(x.get_shape().elements(), [&](auto j) { f(x[j], xs[j]...); });
}); });
} }
template <class Input>
constexpr auto elements() const
{
using reduce_type = decltype(slicer(Input{}));
using value_type = typename Input::type;
constexpr auto relements = get_shape_c<reduce_type>{}.elements();
if constexpr(vec_size<value_type>() > 1)
return relements * vec_size<value_type>();
else
return relements;
}
}; };
template <class Slicer> template <class Slicer>
...@@ -281,6 +293,13 @@ struct lane ...@@ -281,6 +293,13 @@ struct lane
} }
}); });
} }
template <class Input>
constexpr auto elements() const
{
using reduce_type = decltype(slicer(Input{}));
return get_shape_c<reduce_type>{}.elements();
}
}; };
template <class Slicer> template <class Slicer>
......
...@@ -175,7 +175,7 @@ template <class T, class Op> ...@@ -175,7 +175,7 @@ template <class T, class Op>
constexpr auto vec_reduce(T x, Op op) constexpr auto vec_reduce(T x, Op op)
{ {
if constexpr(vec_size<T>() < 2) if constexpr(vec_size<T>() < 2)
return x; return vec_type<T>{x};
else else
{ {
vec_type<T> result = x[0]; vec_type<T> result = x[0];
......
...@@ -24,12 +24,53 @@ ...@@ -24,12 +24,53 @@
#include <migraphx/gpu/prefuse_ops.hpp> #include <migraphx/gpu/prefuse_ops.hpp>
#include <migraphx/match/layernorm.hpp> #include <migraphx/match/layernorm.hpp>
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace gpu { namespace gpu {
namespace { namespace {
template <class Derived, std::size_t N>
struct layernorm_base
{
shape compute_shape(std::vector<shape> inputs, std::vector<module_ref> mods) const
{
std::size_t nargs = 1;
if(not mods.empty())
{
auto* pm = mods.front();
nargs = pm->get_parameter_names().size();
}
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(nargs + N);
auto s = inputs.at(0);
if(s.scalar())
{
return s;
}
else if(s.broadcasted())
{
return {s.type(), s.lens()};
}
else
{
return s.with_lens(s.lens());
}
}
};
struct layernorm : layernorm_base<layernorm, 0>
{
std::string name() const { return "gpu::prelayernorm"; }
};
MIGRAPHX_REGISTER_OP(layernorm);
struct add_layernorm : layernorm_base<add_layernorm, 1>
{
std::string name() const { return "gpu::preadd_layernorm"; }
};
MIGRAPHX_REGISTER_OP(add_layernorm);
struct find_layernorm struct find_layernorm
{ {
auto matcher() const { return match::layernorm(); } auto matcher() const { return match::layernorm(); }
...@@ -39,59 +80,30 @@ struct find_layernorm ...@@ -39,59 +80,30 @@ struct find_layernorm
auto ins = r.result; auto ins = r.result;
auto x_ins = r.instructions["x"]; auto x_ins = r.instructions["x"];
if(not x_ins->get_shape().standard()) m.replace_instruction(ins, layernorm{}, x_ins);
x_ins = m.insert_instruction(ins, make_op("contiguous"), x_ins);
auto relements = x_ins->get_shape().lens().back();
if(relements > 1024 or (relements % 4 != 0 and relements > 256))
return;
auto a = m.insert_instruction(
ins, make_op("hip::allocate", {{"shape", to_value(x_ins->get_shape())}}));
m.replace_instruction(ins, make_op("gpu::layernorm"), x_ins, a);
} }
}; };
struct find_triaddlayernorm struct find_add_layernorm
{ {
auto matcher() const auto matcher() const
{ {
auto add1 = return match::layernorm()(match::var("x")(match::name("add").bind("add")));
match::name("add")(match::none_of(match::is_constant()),
match::args(match::any().bind("z1"), match::any().bind("z2")));
auto add2 = match::name("add")(match::either_arg(0, 1)(add1, match::any().bind("z3")));
return match::layernorm()(match::var("x")(add2));
} }
void apply(module& m, const match::matcher_result& r) const void apply(module& m, const match::matcher_result& r) const
{ {
auto ins = r.result; auto ins = r.result;
auto x_ins = r.instructions["z1"]; auto add_ins = r.instructions["add"];
auto y_ins = r.instructions["z2"];
auto z_ins = r.instructions["z3"];
for(auto* pins : {&x_ins, &y_ins, &z_ins})
{
if(not(*pins)->get_shape().standard())
*pins = m.insert_instruction(ins, make_op("contiguous"), *pins);
}
auto relements = x_ins->get_shape().lens().back();
if(relements > 1024 or (relements % 4 != 0 and relements > 256))
return;
auto a = m.insert_instruction( m.replace_instruction(ins, add_layernorm{}, add_ins->inputs());
ins, make_op("hip::allocate", {{"shape", to_value(x_ins->get_shape())}}));
m.replace_instruction(ins, make_op("gpu::triadd_layernorm"), x_ins, y_ins, z_ins, a);
} }
}; };
} // namespace } // namespace
void prefuse_ops::apply(module& m) const void prefuse_ops::apply(module& m) const
{ {
match::find_matches(m, find_triaddlayernorm{}, find_layernorm{}); match::find_matches(m, find_add_layernorm{}, find_layernorm{});
} }
} // namespace gpu } // namespace gpu
......
...@@ -244,7 +244,6 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>> ...@@ -244,7 +244,6 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>>
auto weights_lens = args[1].get_shape().lens(); auto weights_lens = args[1].get_shape().lens();
std::vector<std::size_t> k_lens{weights_lens.begin() + 2, weights_lens.end()}; std::vector<std::size_t> k_lens{weights_lens.begin() + 2, weights_lens.end()};
padding = calc_dyn_auto_pad(img_lens, k_lens, op.stride, op.dilation); padding = calc_dyn_auto_pad(img_lens, k_lens, op.stride, op.dilation);
std::cout << "[ ";
output_shape = output_shape =
compute_padded_shape({args.at(0).get_shape(), args.at(1).get_shape()}, padding); compute_padded_shape({args.at(0).get_shape(), args.at(1).get_shape()}, padding);
} }
......
...@@ -26,8 +26,9 @@ ...@@ -26,8 +26,9 @@
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
#include <migraphx/program.hpp> #include <migraphx/program.hpp>
#include <migraphx/register_target.hpp> #include <migraphx/register_target.hpp>
#include <migraphx/ref/target.hpp> #include <migraphx/fpga/target.hpp>
#include <migraphx/target_assignments.hpp> #include <migraphx/target_assignments.hpp>
#include <migraphx/iterator_for.hpp>
migraphx::program create_program() migraphx::program create_program()
{ {
...@@ -37,8 +38,8 @@ migraphx::program create_program() ...@@ -37,8 +38,8 @@ migraphx::program create_program()
auto x = mm->add_parameter("x", s); auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s); auto y = mm->add_parameter("y", s);
auto z = mm->add_parameter("z", s); auto z = mm->add_parameter("z", s);
auto diff = mm->add_instruction(migraphx::make_op("div"), x, y); auto diff = mm->add_instruction(migraphx::make_op("add"), x, y);
mm->add_instruction(migraphx::make_op("div"), diff, z); mm->add_instruction(migraphx::make_op("add"), diff, z);
return p; return p;
} }
...@@ -47,14 +48,16 @@ TEST_CASE(is_supported) ...@@ -47,14 +48,16 @@ TEST_CASE(is_supported)
auto p = create_program(); auto p = create_program();
auto targets = migraphx::get_targets(); auto targets = migraphx::get_targets();
EXPECT(!targets.empty()); EXPECT(!targets.empty());
auto first_target = targets[0]; auto t = migraphx::make_target("fpga");
auto t = migraphx::make_target(first_target);
const auto assignments = p.get_target_assignments({t}); const auto assignments = p.get_target_assignments({t});
for(const auto& [ins, target] : assignments) const auto* mod = p.get_main_module();
EXPECT(mod->size() == assignments.size());
for(const auto ins : iterator_for(*mod))
{ {
(void)ins; const auto& target = assignments.at(ins);
EXPECT(target == first_target); EXPECT(target == "fpga");
} }
} }
......
...@@ -108,15 +108,7 @@ struct function ...@@ -108,15 +108,7 @@ struct function
}; };
template <class Stream, class Iterator> template <class Stream, class Iterator>
inline Stream& stream_range(Stream& s, Iterator start, Iterator last) Stream& stream_range(Stream& s, Iterator start, Iterator last);
{
if(start != last)
{
s << *start;
std::for_each(std::next(start), last, [&](auto&& x) { s << ", " << x; });
}
return s;
}
template <class Stream> template <class Stream>
inline Stream& operator<<(Stream& s, std::nullptr_t) inline Stream& operator<<(Stream& s, std::nullptr_t)
...@@ -136,6 +128,17 @@ inline auto operator<<(Stream& s, const Range& v) -> decltype(stream_range(s, v. ...@@ -136,6 +128,17 @@ inline auto operator<<(Stream& s, const Range& v) -> decltype(stream_range(s, v.
return s; return s;
} }
template <class Stream, class Iterator>
inline Stream& stream_range(Stream& s, Iterator start, Iterator last)
{
if(start != last)
{
s << *start;
std::for_each(std::next(start), last, [&](auto&& x) { s << ", " << x; });
}
return s;
}
template <class T> template <class T>
const T& get_value(const T& x) const T& get_value(const T& x)
{ {
......
...@@ -39,6 +39,15 @@ void run_pass(migraphx::module& m) ...@@ -39,6 +39,15 @@ void run_pass(migraphx::module& m)
migraphx::run_passes(m, {migraphx::simplify_reshapes{}, migraphx::dead_code_elimination{}}); migraphx::run_passes(m, {migraphx::simplify_reshapes{}, migraphx::dead_code_elimination{}});
} }
inline std::vector<std::vector<std::size_t>> to_lens(const std::vector<migraphx::shape>& shapes)
{
std::vector<std::vector<std::size_t>> result;
std::transform(shapes.begin(), shapes.end(), std::back_inserter(result), [&](const auto& s) {
return s.lens();
});
return result;
}
TEST_CASE(double_contig) TEST_CASE(double_contig)
{ {
migraphx::program p; migraphx::program p;
...@@ -1275,4 +1284,82 @@ TEST_CASE(transpose_slice_single_transpose) ...@@ -1275,4 +1284,82 @@ TEST_CASE(transpose_slice_single_transpose)
EXPECT(m1 == m2); EXPECT(m1 == m2);
} }
TEST_CASE(transpose_slice_non_packed_axis)
{
migraphx::module m1;
{
auto x = m1.add_parameter("x", {migraphx::shape::float_type, {2, 384, 36, 64}});
auto transpose =
m1.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), x);
auto slice = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {0}}, {"ends", {12}}}),
transpose);
auto sqrt = m1.add_instruction(migraphx::make_op("sqrt"), slice);
m1.add_return({sqrt});
}
auto output_shapes = m1.get_output_shapes();
run_pass(m1);
EXPECT(m1.get_output_shapes() == output_shapes);
migraphx::module m2;
{
auto x = m2.add_parameter("x", {migraphx::shape::float_type, {2, 384, 36, 64}});
auto unsqueeze =
m2.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}, {"steps", {12}}}), x);
auto transpose = m2.add_instruction(
migraphx::make_op("transpose", {{"permutation", {3, 0, 2, 1, 4}}}), unsqueeze);
auto slice = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), transpose);
auto squeeze = m2.add_instruction(migraphx::make_op("squeeze", {{"axes", {0}}}), slice);
auto sqrt = m2.add_instruction(migraphx::make_op("sqrt"), squeeze);
m2.add_return({sqrt});
}
EXPECT(m1 == m2);
}
TEST_CASE(transpose_slice_non_packed_multi_axis)
{
migraphx::module m1;
{
auto x = m1.add_parameter("x", {migraphx::shape::float_type, {2, 384, 36, 64}});
auto transpose =
m1.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 1, 3}}}), x);
auto slice1 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {0}}, {"ends", {12}}}),
transpose);
auto slice2 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {12}}, {"ends", {24}}}),
transpose);
auto transpose2 = m1.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), slice2);
auto slice3 = m1.add_instruction(
migraphx::make_op("slice", {{"axes", {1}}, {"starts", {24}}, {"ends", {36}}}),
transpose);
m1.add_return({slice1, transpose2, slice3});
}
auto output_shapes = m1.get_output_shapes();
run_pass(m1);
EXPECT(to_lens(m1.get_output_shapes()) == to_lens(output_shapes));
migraphx::module m2;
{
auto x = m2.add_parameter("x", {migraphx::shape::float_type, {2, 384, 36, 64}});
auto unsqueeze =
m2.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}, {"steps", {12}}}), x);
auto transpose = m2.add_instruction(
migraphx::make_op("transpose", {{"permutation", {3, 0, 2, 1, 4}}}), unsqueeze);
auto slice1 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), transpose);
auto squeeze1 = m2.add_instruction(migraphx::make_op("squeeze", {{"axes", {0}}}), slice1);
auto slice2 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {1}}, {"ends", {2}}}), transpose);
auto squeeze2 = m2.add_instruction(migraphx::make_op("squeeze", {{"axes", {0}}}), slice2);
auto transpose2 = m2.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), squeeze2);
auto slice3 = m2.add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {2}}, {"ends", {3}}}), transpose);
auto squeeze3 = m2.add_instruction(migraphx::make_op("squeeze", {{"axes", {0}}}), slice3);
m2.add_return({squeeze1, transpose2, squeeze3});
}
EXPECT(m1.sort() == m2.sort());
}
int main(int argc, const char* argv[]) { test::run(argc, argv); } int main(int argc, const char* argv[]) { test::run(argc, argv); }
...@@ -68,7 +68,7 @@ struct test_layernorm : verify_program<test_layernorm> ...@@ -68,7 +68,7 @@ struct test_layernorm : verify_program<test_layernorm>
{ {
migraphx::program p; migraphx::program p;
auto* mm = p.get_main_module(); auto* mm = p.get_main_module();
std::vector<size_t> dims = {1, 1, 5}; std::vector<size_t> dims = {1, 2, 5};
auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, dims}); auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, dims});
add_layernorm(*mm, x, dims); add_layernorm(*mm, x, dims);
return p; return p;
......
...@@ -37,8 +37,10 @@ ...@@ -37,8 +37,10 @@
#include <migraphx/compile_options.hpp> #include <migraphx/compile_options.hpp>
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/rank.hpp> #include <migraphx/rank.hpp>
#include <migraphx/module_ref.hpp>
#include <migraphx/support_metric.hpp> #include <migraphx/support_metric.hpp>
#include <migraphx/instruction_ref.hpp> #include <migraphx/instruction_ref.hpp>
#include <migraphx/supported_segments.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -64,12 +66,12 @@ struct target ...@@ -64,12 +66,12 @@ struct target
*/ */
context get_context() const; context get_context() const;
/** /**
* @brief Check how well an instruction is supported on a target with the given metric * @brief Get the ranges of instructions that are supported on a target
* @param ins Instruction to check if it's supported * @param module Module to check for supported instructions
* @param metric Used to define how the return value should be interpreted * @param metric Used to define how the quality of the support should be measured
* @return The value based on the chosen metric. Negative numbers mean unsupported * @return the supported segments of the graph
*/ */
float is_supported(T&, instruction_ref ins, support_metric m) const; supported_segments target_is_supported(T&, const_module_ref mod, support_metric metric) const;
/** /**
* @brief copy an argument to the current target. * @brief copy an argument to the current target.
* *
...@@ -115,9 +117,9 @@ argument copy_from_target(T&, const argument& arg) ...@@ -115,9 +117,9 @@ argument copy_from_target(T&, const argument& arg)
} }
template <class T> template <class T>
float target_is_supported(T&, instruction_ref, support_metric) supported_segments target_find_supported(T&, const_module_ref, support_metric)
{ {
return 0; return {};
} }
<% <%
...@@ -125,7 +127,7 @@ interface('target', ...@@ -125,7 +127,7 @@ interface('target',
virtual('name', returns='std::string', const=True), virtual('name', returns='std::string', const=True),
virtual('get_passes', ctx='context&', options='const compile_options&', returns='std::vector<pass>', const=True), virtual('get_passes', ctx='context&', options='const compile_options&', returns='std::vector<pass>', const=True),
virtual('get_context', returns='context', const=True), virtual('get_context', returns='context', const=True),
virtual('is_supported', returns='float', ins='instruction_ref', m='support_metric', const=True, default='target_is_supported'), virtual('find_supported', returns='supported_segments', mod='const_module_ref', m='support_metric', const=True, default='target_find_supported'),
virtual('copy_to', virtual('copy_to',
returns = 'argument', returns = 'argument',
input = 'const argument&', input = 'const argument&',
......
...@@ -23,7 +23,9 @@ ...@@ -23,7 +23,9 @@
##################################################################################### #####################################################################################
import string, sys, re import string, sys, re
trivial = ['std::size_t', 'instruction_ref', 'support_metric'] trivial = [
'std::size_t', 'instruction_ref', 'support_metric', 'const_module_ref'
]
headers = ''' headers = '''
#include <algorithm> #include <algorithm>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment