Commit 124f7d55 authored by Umang Yadav's avatar Umang Yadav
Browse files

Merge branch 'develop' into resnet50_partition

parents 350bbea2 34b68ee4
......@@ -22,27 +22,24 @@
# THE SOFTWARE.
#####################################################################################
option(MIGRAPHX_ENABLE_PYTHON "Enable python bindings" ON)
add_library(migraphx_py py_loader.cpp)
migraphx_generate_export_header(migraphx_py)
target_include_directories(migraphx_py PRIVATE include)
target_link_libraries(migraphx_py PUBLIC migraphx)
rocm_install_targets(TARGETS migraphx_py INCLUDE include)
if(MIGRAPHX_ENABLE_PYTHON)
include(PythonModules)
include(PythonModules)
foreach(PYTHON_VERSION ${PYTHON_VERSIONS})
py_add_module(migraphx_pybind_${PYTHON_VERSION} migraphx_py.cpp PYTHON_VERSION ${PYTHON_VERSION} PYTHON_MODULE migraphx)
target_link_libraries(migraphx_pybind_${PYTHON_VERSION} PRIVATE migraphx migraphx_tf migraphx_onnx migraphx_all_targets)
rocm_install_targets(TARGETS migraphx_pybind_${PYTHON_VERSION})
add_dependencies(migraphx_py migraphx_pybind_${PYTHON_VERSION})
add_library(migraphx_py_${PYTHON_VERSION} py.cpp)
target_include_directories(migraphx_py_${PYTHON_VERSION} PRIVATE include)
target_link_libraries(migraphx_py_${PYTHON_VERSION} PUBLIC migraphx)
target_link_libraries(migraphx_py_${PYTHON_VERSION} PRIVATE pybind11::pybind11 python${PYTHON_VERSION}::runtime)
rocm_install_targets(TARGETS migraphx_py_${PYTHON_VERSION})
add_dependencies(migraphx_py migraphx_py_${PYTHON_VERSION})
endforeach()
endif()
foreach(PYTHON_VERSION ${PYTHON_VERSIONS})
py_add_module(migraphx_pybind_${PYTHON_VERSION} migraphx_py.cpp PYTHON_VERSION ${PYTHON_VERSION} PYTHON_MODULE migraphx)
target_link_libraries(migraphx_pybind_${PYTHON_VERSION} PRIVATE migraphx migraphx_tf migraphx_onnx migraphx_all_targets)
rocm_install_targets(TARGETS migraphx_pybind_${PYTHON_VERSION})
add_dependencies(migraphx_py migraphx_pybind_${PYTHON_VERSION})
add_library(migraphx_py_${PYTHON_VERSION} py.cpp)
target_include_directories(migraphx_py_${PYTHON_VERSION} PRIVATE include)
target_link_libraries(migraphx_py_${PYTHON_VERSION} PUBLIC migraphx)
target_link_libraries(migraphx_py_${PYTHON_VERSION} PRIVATE pybind11::pybind11 python${PYTHON_VERSION}::runtime)
rocm_install_targets(TARGETS migraphx_py_${PYTHON_VERSION})
add_dependencies(migraphx_py migraphx_py_${PYTHON_VERSION})
endforeach()
......@@ -70,6 +70,10 @@ void quantize_int8(program& prog,
MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation");
}
// Run optimize_module() before converting to int8 to const eval and fold in FP32 to
// avoid loss of precision.
run_passes(prog, {optimize_module{}});
std::shared_ptr<std::vector<std::pair<float, float>>> int8_quant_params =
std::make_shared<std::vector<std::pair<float, float>>>();
std::shared_ptr<std::vector<float>> max_abs_vals = std::make_shared<std::vector<float>>();
......@@ -143,10 +147,7 @@ void quantize_int8(program& prog,
run_passes(prog,
{quantize_int8_pass{ins_names, *int8_quant_params},
eliminate_common_subexpression{},
dead_code_elimination{},
simplify_reshapes{},
dead_code_elimination{},
optimize_module{},
simplify_qdq{},
dead_code_elimination{}});
}
......
......@@ -43,9 +43,7 @@ void rewrite_pooling::apply(module& m) const
continue;
if(ins->inputs().empty())
continue;
auto&& s = ins->inputs().front()->get_shape();
if(not s.standard())
continue;
auto&& s = ins->inputs().front()->get_shape();
auto&& op = any_cast<op::pooling>(ins->get_operator());
if(not std::all_of(op.padding.begin(), op.padding.end(), [](auto i) { return i == 0; }))
continue;
......@@ -54,27 +52,18 @@ void rewrite_pooling::apply(module& m) const
auto lens = s.lens();
if(not std::equal(lens.begin() + 2, lens.end(), op.lengths.begin(), op.lengths.end()))
continue;
std::int64_t n = s.lens()[0];
std::int64_t c = s.lens()[1];
auto reshape = m.insert_instruction(
ins, make_op("reshape", {{"dims", {n * c, -1}}}), ins->inputs().front());
instruction_ref pooling{};
std::vector<std::int64_t> axes(lens.size() - 2);
std::iota(axes.begin(), axes.end(), 2);
// average pooling
if(op.mode == op::pooling_mode::average)
{
pooling = m.insert_instruction(ins, make_op("reduce_mean", {{"axes", {1}}}), reshape);
m.replace_instruction(ins, make_op("reduce_mean", {{"axes", axes}}), ins->inputs());
}
// max pooling
else
{
pooling = m.insert_instruction(ins, make_op("reduce_max", {{"axes", {1}}}), reshape);
m.replace_instruction(ins, make_op("reduce_max", {{"axes", axes}}), ins->inputs());
}
std::vector<int64_t> rsp_lens(lens.size(), 1);
rsp_lens[0] = n;
rsp_lens[1] = c;
m.replace_instruction(ins, make_op("reshape", {{"dims", rsp_lens}}), pooling);
}
}
......
......@@ -1325,48 +1325,59 @@ struct find_split_reshape
void apply(module& m, const match::matcher_result& r) const
{
auto slc = r.instructions["slice"];
auto rsp = r.instructions["reshape"];
auto slc = r.instructions["slice"];
auto rsp = r.instructions["reshape"];
auto input = slc->inputs().front();
// Only apply simplification when slices are on a single axis
auto axes = any_cast<op::slice>(slc->get_operator()).axes;
if(axes.size() > 1)
{
return;
}
auto input = slc->inputs().front();
auto split_outputs = get_splits(input);
if(split_outputs.empty())
{
return;
}
// Only want to apply this optimization if each split output is followed by
// a contiguous op and a reshape
if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
if(i->outputs().size() == 1)
{
auto cont = i->outputs().front();
return cont->outputs().size() != 1;
}
return false;
}))
// Find all the reshapes (similar to rsp) that can be simplified
std::vector<instruction_ref> conts;
std::vector<instruction_ref> vec_rsp;
// Iterate through slice and contiguous outputs to allow simplifications when
// slice is followed by multiple reshapes
for(auto& i : split_outputs)
{
return;
std::copy_if(i->outputs().begin(),
i->outputs().end(),
std::back_inserter(conts),
[](auto j) { return j->name() == "contiguous"; });
}
std::vector<instruction_ref> vec_rsp(split_outputs.size());
std::transform(split_outputs.begin(), split_outputs.end(), vec_rsp.begin(), [](auto i) {
auto cont = i->outputs().front();
return cont->outputs().front();
});
for(auto& i : conts)
{
std::copy_if(i->outputs().begin(),
i->outputs().end(),
std::back_inserter(vec_rsp),
[&](auto j) { return j->get_operator() == rsp->get_operator(); });
}
// all outputs are reshape and of the same shape
auto dims = any_cast<op::reshape>(rsp->get_operator()).dims;
if(not same_ops(vec_rsp))
// No simplification needed if there is only one slice -> cont -> reshape
if(vec_rsp.size() <= 1)
{
return;
}
// ensure reshape happens after the axis dimension
auto axis = any_cast<op::slice>(slc->get_operator()).axes[0];
auto axis = axes[0];
auto slc_lens = slc->get_shape().lens();
auto slc_dim_size = std::accumulate(
slc_lens.begin() + axis, slc_lens.end(), 1, std::multiplies<std::size_t>());
auto input_lens = input->get_shape().lens();
auto input_size = input->get_shape().elements();
auto slc_axis_len = input_lens[axis];
// search the reshape output (standard shape) to decide which axis are
// in its output corresponding to the slc_dim_size
......@@ -1393,16 +1404,67 @@ struct find_split_reshape
{
rsp_axis = std::distance(rsp_strides.begin(), ait);
}
// calculate reshape output shape
std::vector<int64_t> vec_dims(vec_rsp.size());
std::transform(vec_rsp.begin(), vec_rsp.end(), vec_dims.begin(), [&](auto is) {
return is->get_shape().lens()[rsp_axis];
});
// Calculate reshape output shape
// Need to find a reshape such that data represented by instructions in vec_rsp can be
// written as slices of this new reshape. This is done by holding all the dims constant in
// rsp_lens to compute the required dim for rsp_axis (axis that will be sliced)
// ex 1: Input Shape: {2, 12, 4}, Slice Axis: 1, Slices are: (0:4), (4:8), (8:12),
// Reshape Outputs: {2, 2, 2, 4}, {2, 2, 2, 4}, {2, 2, 2, 4}
// rsp_axis = 1, rsp_out_lens (initial) = {2, 1, 2, 4}, rsp_fixed_size = 2*1*2*4 = 16
// rsp_axis_len = 2*12*4 / 16 = 6
// rsp_out_lens (final) = {2, 6, 2, 4}
// ex 2: Input Shape: {2, 12, 4}, Slice Axis: 1, Slices are: (0:4), (4:8), (8:12),
// Reshape Outputs: {2, 16}, {2, 16}, {2, 16}
// rsp_axis = 1, rsp_out_lens (initial) = {2, 1}, rsp_fixed_size = 2*1 = 2
// rsp_axis_len = 2*12*4 / 2 = 48
// rsp_out_lens (final) = {2, 48}
std::vector<int64_t> rsp_out_lens(rsp_lens.begin(), rsp_lens.end());
rsp_out_lens[rsp_axis] = 1;
auto rsp_fixed_size = std::accumulate(
rsp_out_lens.begin(), rsp_out_lens.end(), 1, std::multiplies<std::size_t>());
rsp_out_lens[rsp_axis] = std::accumulate(vec_dims.begin(), vec_dims.end(), std::int64_t{0});
// cannot create a valid reshape for simplification
if(input_size % rsp_fixed_size != 0)
{
return;
}
auto rsp_axis_len = input_size / rsp_fixed_size;
rsp_out_lens[rsp_axis] = rsp_axis_len;
// Calculate new slice start and end indices. Indices are scaled using the new reshape axis
// and the original slice axis. See examples:
// ex 1: Input Shape: {2, 12, 4}, Slice Axis: 1, Slices are: (0:4), (4:8), (8:12),
// Reshape Outputs: {2, 2, 2, 4}, {2, 2, 2, 4}, {2, 2, 2, 4}
// slc_axis_len = 12, rsp_axis_len = 6
// New Starts: {0*6/12, 4*6/12, 8*6/12} = {0, 2, 4}
// New Ends: {4*6/12, 8*6/12, 12*6/12} = {2, 4, 6}
// ex 2: Input Shape: {2, 12, 4}, Slice Axis: 1, Slices are: (0:4), (4:8), (8:12),
// Reshape Outputs: {2, 16}, {2, 16}, {2, 16}
// slc_axis_len = 12, rsp_axis_len = 48
// New Starts: {0*48/12, 4*48/12, 8*48/12} = { 0, 16, 32}
// New Ends: {4*48/12, 8*48/12, 12*48/12} = {16, 32, 48}
std::vector<int64_t> new_starts(vec_rsp.size());
std::transform(vec_rsp.begin(), vec_rsp.end(), new_starts.begin(), [&](auto is) {
auto cont = is->inputs().front();
auto og_slc = cont->inputs().front();
return any_cast<op::slice>(og_slc->get_operator()).starts[0] * rsp_axis_len /
slc_axis_len;
});
std::vector<int64_t> new_ends(vec_rsp.size());
std::transform(vec_rsp.begin(), vec_rsp.end(), new_ends.begin(), [&](auto is) {
auto cont = is->inputs().front();
auto og_slc = cont->inputs().front();
return any_cast<op::slice>(og_slc->get_operator()).ends[0] * rsp_axis_len /
slc_axis_len;
});
// insert the reshape instruction and add contiguous if needed
if(not input->get_shape().standard())
......@@ -1413,16 +1475,14 @@ struct find_split_reshape
std::next(input), make_op("reshape", {{"dims", rsp_out_lens}}), input);
// replace the original reshape with slice
int64_t start = 0;
for(std::size_t i = 0; i < vec_rsp.size(); ++i)
{
m.replace_instruction(
vec_rsp[i],
make_op(
"slice",
{{"axes", {rsp_axis}}, {"starts", {start}}, {"ends", {start + vec_dims[i]}}}),
{{"axes", {rsp_axis}}, {"starts", {new_starts[i]}}, {"ends", {new_ends[i]}}}),
rsp_ins);
start += vec_dims[i];
}
}
};
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/simplify_dyn_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
/**
* Convert 2 input static shape broadcast/multibroadcast into 1 input version.
* Some compiler passes (ex. simplify_algebra) only support the 1 input versions
* of the broadcasting operators.
*/
struct find_static_2in_broadcasts
{
auto matcher() const
{
return match::broadcast(match::nargs(2),
match::arg(0)(match::static_shape()),
match::arg(1)(match::static_shape()));
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto out_lens = ins->get_shape().lens();
auto broadcast_op = ins->get_operator();
if(broadcast_op.name() == "broadcast")
{
broadcast_op.from_value({{"out_lens", out_lens}});
}
else
{
broadcast_op.from_value({{"out_lens", out_lens}, {"out_dyn_dims", {}}});
}
m.replace_instruction(ins, broadcast_op, ins->inputs().at(0));
}
};
/**
* Simplify slice with variable `starts` and `ends` to the constant version if
* the `input_starts` and `input_ends` inputs are constant.
*/
struct find_const_3in_slice
{
auto matcher() const
{
return match::name("slice")(match::nargs(3),
match::arg(1)(match::is_constant()),
match::arg(2)(match::is_constant()));
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto inputs = ins->inputs();
argument starts_arg = inputs.at(1)->eval();
argument ends_arg = inputs.at(2)->eval();
if(not starts_arg.empty() and not ends_arg.empty())
{
std::vector<int64_t> starts_vec;
std::vector<int64_t> ends_vec;
starts_arg.visit([&](auto output) { starts_vec.assign(output.begin(), output.end()); });
ends_arg.visit([&](auto output) { ends_vec.assign(output.begin(), output.end()); });
auto slice_val = ins->get_operator().to_value();
auto axes_vec = slice_val.at("axes").to_vector<int64_t>();
m.replace_instruction(
ins,
make_op("slice", {{"starts", starts_vec}, {"ends", ends_vec}, {"axes", axes_vec}}),
inputs.at(0));
}
}
};
/**
* Simplify slice with variable `starts`, `ends`, and `input_axes` to the constant version if
* the `input_starts`, `input_ends`, and `input_axes` inputs are constant.
*/
struct find_const_4in_slice
{
auto matcher() const
{
return match::name("slice")(match::nargs(4),
match::arg(1)(match::is_constant()),
match::arg(2)(match::is_constant()),
match::arg(3)(match::is_constant()));
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto inputs = ins->inputs();
argument starts_arg = inputs.at(1)->eval();
argument ends_arg = inputs.at(2)->eval();
argument axes_arg = inputs.at(3)->eval();
if(not starts_arg.empty() and not ends_arg.empty() and not axes_arg.empty())
{
std::vector<int64_t> starts_vec;
std::vector<int64_t> ends_vec;
std::vector<int64_t> axes_vec;
starts_arg.visit([&](auto output) { starts_vec.assign(output.begin(), output.end()); });
ends_arg.visit([&](auto output) { ends_vec.assign(output.begin(), output.end()); });
axes_arg.visit([&](auto output) { axes_vec.assign(output.begin(), output.end()); });
m.replace_instruction(
ins,
make_op("slice", {{"starts", starts_vec}, {"ends", ends_vec}, {"axes", axes_vec}}),
inputs.at(0));
}
}
};
void simplify_dyn_ops::apply(module& m) const
{
match::find_matches(
m, find_static_2in_broadcasts{}, find_const_3in_slice{}, find_const_4in_slice{});
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -122,6 +122,11 @@ struct find_nop_reshapes
reshapes.insert("pad");
reshapes.insert("slice");
reshapes.insert("transpose");
reshapes.insert("reduce_mean");
reshapes.insert("reduce_max");
reshapes.insert("reduce_min");
reshapes.insert("reduce_sum");
reshapes.insert("reduce_prod");
return match::name(reshapes)(match::same_shape(match::arg(0)));
}
......@@ -627,6 +632,30 @@ struct find_transpose_contiguous_reshaper_unary
}
};
struct find_broadcast_transpose
{
auto matcher() const
{
return match::name("transpose")(
match::arg(0)(match::name("multibroadcast").bind("bcast_ins")));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto ins_lens = ins->get_shape().lens();
auto bcast_ins = r.instructions["bcast_ins"];
auto input = bcast_ins->inputs().front();
// for now, focusing on scalar transformation
if(not input->get_shape().scalar())
return;
auto new_mbcast = m.insert_instruction(
bcast_ins, make_op("multibroadcast", {{"out_lens", ins_lens}}), input);
m.replace_instruction(ins, new_mbcast);
}
};
struct find_slice_transpose
{
auto matcher() const
......@@ -799,6 +828,7 @@ void simplify_reshapes::apply(module& m) const
find_nested_slice{},
find_nested_concat{},
find_transpose_slice{},
find_broadcast_transpose{},
find_slice_transpose{},
find_transpose_contiguous_reshaper_unary{});
dead_code_elimination{}.apply(m);
......
......@@ -68,37 +68,6 @@ has_one_dyn_dim(const std::unordered_map<std::string, shape>& param_shapes)
dds_it->max};
}
namespace {
struct find_static_2in_broadcasts
{
// Convert 2 input static shape broadcast/multibroadcast into 1 input version.
// Some compiler passes (ex. simplify_algebra) only support the 1 input versions
// of the broadcasting operators.
auto matcher() const
{
return match::broadcast(match::nargs(2),
match::arg(0)(match::static_shape()),
match::arg(1)(match::static_shape()));
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto out_lens = ins->get_shape().lens();
auto broadcast_op = ins->get_operator();
if(broadcast_op.name() == "broadcast")
{
broadcast_op.from_value({{"out_lens", out_lens}});
}
else
{
broadcast_op.from_value({{"out_lens", out_lens}, {"out_dyn_dims", {}}});
}
m.replace_instruction(ins, broadcast_op, ins->inputs().at(0));
}
};
} // namespace
/**
* Makes all the shapes in the dynamic_dimension range. Probably won't work for `if`
* and `loop` instructions, depending on how the submodules for those
......@@ -135,7 +104,6 @@ void split_single_dyn_dim::apply(module_pass_manager& mpm) const
dd_check->dyn_param_str, migraphx::shape{dyn_param_shape.type(), static_lens});
auto outputs = submod->add_instructions(mm, map_ins);
submod->add_return({outputs});
match::find_matches(*submod, find_static_2in_broadcasts{});
submodules.push_back(submod);
}
// redirect to select_module operator and return
......
......@@ -91,6 +91,19 @@ struct post_op : reflect_equality<post_op>, reflect_stream<post_op>
}
};
template <class F>
struct execute_wrapper
{
F f;
argument operator()(context&, const std::vector<argument>& args) const { return f(args); }
};
template <class F>
execute_wrapper<F> make_execute_wrapper(F f)
{
return {std::move(f)};
}
template <class Derived, class Primitive>
struct dnnl_op : auto_register_op<Derived>
{
......@@ -308,7 +321,7 @@ struct dnnl_op : auto_register_op<Derived>
#ifndef NDEBUG
auto prim_attr = get_primitive_attr(md);
#endif
execute = [=](context&, const std::vector<argument>& args) {
execute = make_execute_wrapper([=](const std::vector<argument>& args) {
#ifndef NDEBUG
// Check that the memory descriptors have not changed
auto debug_args = args;
......@@ -379,7 +392,7 @@ struct dnnl_op : auto_register_op<Derived>
m[arg_lookup[i]] = to_dnnl_memory(md.at(arg_lookup[i]), args[i]);
prim.execute(get_dnnl_context().stream, m);
return args.back();
};
});
}
std::vector<shape> trim_post_op_inputs(const std::vector<shape>& inputs) const
{
......
......@@ -24,6 +24,7 @@
#ifndef MIGRAPHX_GUARD_AMDMIGRAPHX_CPU_POINTWISE_HPP
#define MIGRAPHX_GUARD_AMDMIGRAPHX_CPU_POINTWISE_HPP
#include <array>
#include <migraphx/config.hpp>
#include <migraphx/context.hpp>
#include <migraphx/check_shapes.hpp>
......
......@@ -23,6 +23,10 @@
# ####################################################################################
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
find_package(hip)
if(NOT GPU_TARGETS)
message(FATAL_ERROR "HIP package is broken and has no GPU_TARGETS, please pass -DGPU_TARGETS=$(/opt/rocm/bin/rocminfo | grep -o -m1 'gfx.*') to cmake to build for your gpu.")
endif()
find_package(miopen)
# rocblas
......@@ -44,12 +48,21 @@ else()
set(MIGRAPHX_USE_HIPRTC ON CACHE BOOL "Use hipRTC APIs")
endif()
include(Embed)
file(GLOB KERNEL_FILES CONFIGURE_DEPENDS
${CMAKE_CURRENT_SOURCE_DIR}/kernels/include/migraphx/kernels/*.hpp)
message(STATUS "KERNEL_FILES: ${KERNEL_FILES}")
if(WIN32)
# TODO: re-enable when CK is ported to Windows
list(REMOVE_ITEM KERNEL_FILES
${CMAKE_CURRENT_SOURCE_DIR}/kernels/include/migraphx/kernels/ck_gemm.hpp
${CMAKE_CURRENT_SOURCE_DIR}/kernels/include/migraphx/kernels/ck.hpp)
endif()
include(Embed)
add_embed_library(migraphx_kernels ${KERNEL_FILES} RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}/kernels/include/)
configure_file(device/targets.hpp.in include/migraphx/gpu/device/targets.hpp)
file(GLOB DEVICE_GPU_SRCS CONFIGURE_DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/device/*.cpp)
add_library(migraphx_device ${DEVICE_GPU_SRCS})
......@@ -69,6 +82,7 @@ rocm_clang_tidy_check(migraphx_device)
target_link_libraries(migraphx_device PUBLIC migraphx)
target_link_libraries(migraphx_device PRIVATE compile_for_gpu)
target_include_directories(migraphx_device PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>)
target_include_directories(migraphx_device PRIVATE $<BUILD_INTERFACE:${CMAKE_CURRENT_BINAR_DIR}/include>)
target_include_directories(migraphx_device PRIVATE $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/device/include>)
target_compile_options(migraphx_device PRIVATE -Wno-ignored-attributes)
migraphx_generate_export_header(migraphx_device DIRECTORY migraphx/gpu/device)
......@@ -192,7 +206,7 @@ register_op(migraphx_gpu HEADER migraphx/gpu/convolution.hpp
rocm_set_soversion(migraphx_gpu ${MIGRAPHX_SO_VERSION})
rocm_clang_tidy_check(migraphx_gpu)
set(MIGRAPHX_ENABLE_MLIR OFF CACHE BOOL "")
set(MIGRAPHX_ENABLE_MLIR ON CACHE BOOL "")
if(MIGRAPHX_ENABLE_MLIR)
# Find package rocMLIR
......
......@@ -28,6 +28,7 @@
#include <migraphx/env.hpp>
#include <cassert>
#include <iostream>
#include <deque>
#ifdef MIGRAPHX_USE_HIPRTC
#include <hip/hiprtc.h>
......@@ -92,7 +93,7 @@ struct hiprtc_program
{
struct string_array
{
std::vector<std::string> strings{};
std::deque<std::string> strings{};
std::vector<const char*> c_strs{};
string_array() {}
......@@ -209,7 +210,6 @@ std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_sr
options.push_back("-Wno-gnu-line-marker");
options.push_back("-Wno-old-style-cast");
}
if(enabled(MIGRAPHX_GPU_DEBUG{}))
options.push_back("-DMIGRAPHX_DEBUG");
if(std::none_of(options.begin(), options.end(), [](const std::string& s) {
......@@ -248,7 +248,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
{
if(src.path.extension() != ".cpp")
continue;
std::cout << std::string(src.content.first, src.len()) << std::endl;
std::cout << std::string(src.content) << std::endl;
}
}
auto p = dynamic_loader::path(&compile_hip_src_with_hiprtc);
......@@ -338,7 +338,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
{
if(src.path.extension() != ".cpp")
continue;
std::cout << std::string(src.content.first, src.len()) << std::endl;
std::cout << std::string(src.content) << std::endl;
}
}
......@@ -359,9 +359,7 @@ bool hip_has_flags(const std::vector<std::string>& flags)
join_strings(flags, " ") + " -x hip -c --offload-arch=gfx900 --cuda-device-only";
std::string src;
src_file input;
input.path = "main.cpp";
input.content = std::make_pair(src.data(), src.data() + src.size());
src_file input{"main.cpp", src};
try
{
......
......@@ -172,21 +172,17 @@ operation compile_hip_code_object(const std::string& content, hip_compile_option
assert(options.inputs.size() == options.virtual_inputs.size() or
options.virtual_inputs.empty());
std::vector<src_file> srcs = options.additional_src_files;
std::transform(migraphx_kernels().begin(),
migraphx_kernels().end(),
std::back_inserter(srcs),
[](auto&& p) {
auto&& name = p.first;
auto&& c = p.second;
auto path = name;
return src_file{path, c};
});
srcs.push_back(src_file{fs::path{"main.cpp"},
std::make_pair(content.data(), content.data() + content.size())});
static auto kernels{::migraphx_kernels()};
std::transform(
kernels.begin(),
kernels.end(),
std::back_inserter(srcs),
[](const std::pair<std::string_view, std::string_view>& elem) { return src_file{elem}; });
srcs.emplace_back("main.cpp", content);
auto args_hpp =
generate_args_hpp(options.virtual_inputs.empty() ? options.inputs : options.virtual_inputs);
srcs.push_back(src_file{fs::path{"args.hpp"},
std::make_pair(args_hpp.data(), args_hpp.data() + args_hpp.size())});
srcs.emplace_back("args.hpp", args_hpp);
options.params += " -DMIGRAPHX_NGLOBAL=" + std::to_string(options.global);
options.params += " -DMIGRAPHX_NLOCAL=" + std::to_string(options.local);
options.params += " " + join_strings(compiler_warnings(), " ");
......
......@@ -185,8 +185,7 @@ struct compile_plan
results.begin(), results.end(), std::back_inserter(times), [&](const auto& cr) {
if(not cr.has_value())
return std::numeric_limits<double>::max();
return time_op(*ctx, cr->replace.code_object, to_shapes(cr->ins->inputs()), 20)
.first;
return time_op(*ctx, cr->replace.code_object, to_shapes(cr->ins->inputs()), 20);
});
auto i = std::distance(times.begin(), std::min_element(times.begin(), times.end()));
std::cout << "Fastest solution: " << config->solutions.at(i) << std::endl;
......
......@@ -26,7 +26,9 @@
#include <hip/hip_runtime.h>
#include <migraphx/config.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/device/targets.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -79,13 +81,28 @@ inline auto launch(hipStream_t stream, index_int global, index_int local)
using f_type = decltype(f);
dim3 nblocks(global / local);
dim3 nthreads(local);
/*
hipGetLastError() returns error for the first failed HIP call that happened previously.
MIGraphX calls into various backend libraries and failed HIP calls can also happen there.
Calling hipGetLastError() would reset error code to hipSuccess, so that inside MIGraphX
failed call to hipLaunchKernelGGL() can be captured.
*/
hipError_t flush_call = hipGetLastError();
(void)(flush_call);
// cppcheck-suppress UseDeviceLaunch
hipLaunchKernelGGL((launcher<f_type>), nblocks, nthreads, 0, stream, f);
hipError_t kernel_launch_status = hipGetLastError();
if(kernel_launch_status != hipSuccess)
{
MIGRAPHX_THROW("MIGraphX device kernel failed to launch with error: " +
std::string(hipGetErrorString(kernel_launch_status)));
std::string message = hipGetErrorString(kernel_launch_status);
if(not contains(get_targets(), get_device_name()))
{
message += ". Trying to run a kernel for " + get_device_name() +
" but MIGraphX was built for targets " + get_targets_as_string() +
". Please rebuild MIGraphX with -DGPU_TARGETS='" + get_device_name() +
"'.";
}
MIGRAPHX_THROW("MIGraphX device kernel failed to launch with error: " + message);
}
};
}
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/device/targets.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/errors.hpp>
#include <hip/hip_runtime_api.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
static std::vector<std::string> parse_targets() { return split_string(MIGRAPHX_GPU_TARGETS, ';'); }
const std::vector<std::string>& get_targets()
{
static auto result = parse_targets();
return result;
}
std::string get_targets_as_string() { return join_strings(get_targets(), ", "); }
static int get_device_id()
{
int device;
auto status = hipGetDevice(&device);
if(status != hipSuccess)
MIGRAPHX_THROW("No device");
return device;
}
std::string get_device_name()
{
hipDeviceProp_t props{};
auto status = hipGetDeviceProperties(&props, get_device_id());
if(status != hipSuccess)
MIGRAPHX_THROW("Failed to get device properties");
return props.gcnArchName;
}
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_DEVICE_TARGETS_CPP
#define MIGRAPHX_GUARD_DEVICE_TARGETS_CPP
#include <migraphx/gpu/device/config.hpp>
#include <string>
#include <vector>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
#define MIGRAPHX_GPU_TARGETS "@GPU_TARGETS@" // NOLINT
MIGRAPHX_DEVICE_EXPORT
const std::vector<std::string>& get_targets();
MIGRAPHX_DEVICE_EXPORT
std::string get_targets_as_string();
MIGRAPHX_DEVICE_EXPORT
std::string get_device_name();
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_DEVICE_TARGETS_CPP
......@@ -38,10 +38,8 @@ struct compile_op : action<compile_op>
context ctx;
auto inputs = p.parse_shapes(v.at("inputs"));
auto op = gpu::compile_op(v.at("name").to<std::string>(), ctx, inputs, v);
auto [host_time, device_time] = time_op(ctx, op, inputs, p.get(v, "iterations", 100));
std::cout << op << ": " << host_time << "ms";
if(device_time > 0)
std::cout << ", " << device_time << "ms";
auto t = time_op(ctx, op, inputs, p.get(v, "iterations", 100));
std::cout << op << ": " << t << "ms";
std::cout << std::endl;
}
};
......
......@@ -43,8 +43,8 @@ struct run_op : action<run_op>
auto op = make_op(name);
if(v.contains("fields"))
op.from_value(v.at("fields"));
auto [host_time, device_time] = time_op(ctx, op, inputs, p.get(v, "iterations", 100));
std::cout << op << ": " << host_time << "ms" << std::endl;
auto t = time_op(ctx, op, inputs, p.get(v, "iterations", 100));
std::cout << op << ": " << t << "ms" << std::endl;
}
};
......
......@@ -283,9 +283,9 @@ struct find_mlir_fused_ops
names.end(),
ins->inputs().begin(),
std::inserter(param_map, param_map.end()),
[&, &anchor_op = anchor_op](auto name, auto input) {
[&, &anchor = anchor_op](auto name, auto input) {
if(input == x_ins)
return std::make_pair(pm->get_parameter(name), anchor_op);
return std::make_pair(pm->get_parameter(name), anchor);
return std::make_pair(pm->get_parameter(name),
mm->add_parameter(name, input->get_shape()));
});
......@@ -302,10 +302,8 @@ struct find_mlir_fused_ops
}
};
struct find_mlir_standalone_convolution_op
struct find_mlir_standalone_op
{
auto matcher() const { return match::name("convolution"); }
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto conv_based_op = r.result;
......@@ -327,6 +325,16 @@ struct find_mlir_standalone_convolution_op
}
};
struct find_mlir_standalone_convolution_op : find_mlir_standalone_op
{
auto matcher() const { return is_mlir_conv; }
};
struct find_mlir_standalone_dot_op : find_mlir_standalone_op
{
auto matcher() const { return match::any_of(match::name("dot"), match::name("quant_dot")); }
};
/**
* @brief Declares a new MIGraphX environment variable which forces to generate
* only specific MLIR operations.
......@@ -334,7 +342,7 @@ struct find_mlir_standalone_convolution_op
* The variable, if defined, forces MIGraphX to use only specific operations
* with MLIR regardless of the underlying GPU architecture. The variable accepts
* a list of operations separated by comma. The variable recognizes the following
* operations: "fused", "convolution". If the variable is not defined MIGraphX
* operations: "fused", "convolution", "dot". If the variable is not defined MIGraphX
* will decide by itself which operations to delegate to MLIR. The variable is
* intended to be primarily used by rocMLIR developers.
*/
......@@ -349,31 +357,33 @@ bool is_requested(std::string_view option)
return contains(options, option);
}
bool is_fusion_enabled()
{
if(is_self_decide())
{
return true;
}
return is_requested("fused");
}
bool is_standalone_convs_enabled(context* ctx)
bool is_enabled(std::string_view op_name, context* ctx)
{
if(is_self_decide())
{
if(ctx == nullptr)
if(op_name == "fused")
{
return false;
return true;
}
else if(op_name == "convolution" or op_name == "quant_convolution")
{
if(ctx == nullptr)
{
return false;
}
else
{
const auto& device = ctx->get_current_device();
const std::string navi_family{"gfx110"};
return starts_with(device.get_gfx_name(), navi_family);
}
}
else
{
const auto& device = ctx->get_current_device();
const std::string navi_family{"gfx110"};
return starts_with(device.get_gfx_name(), navi_family);
return false;
}
}
return is_requested("convolution");
return is_requested(op_name);
}
} // namespace
......@@ -382,21 +392,25 @@ bool is_standalone_convs_enabled(context* ctx)
void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
if(is_fusion_enabled())
if(is_enabled("fused", this->ctx))
{
match::find_matches(mpm, find_mlir_fused_ops{});
}
if(is_standalone_convs_enabled(this->ctx))
if(is_enabled("convolution", this->ctx))
{
match::find_matches(mpm, find_mlir_standalone_convolution_op{});
}
if(is_enabled("dot", this->ctx))
{
match::find_matches(mpm, find_mlir_standalone_dot_op{});
}
#else
(void)mpm;
#endif
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -790,22 +790,26 @@ struct find_layernorm_pointwise
{
auto matcher() const
{
return precompile_name("pointwise")(match::arg(0)(
return precompile_name("pointwise")(match::any_of[match::inputs()](
precompile_name("gpu::prelayernorm", "gpu::preadd_layernorm").bind("layernorm")));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto pw_ins = r.result;
auto layernorm = r.instructions["layernorm"];
if(not layernorm->module_inputs().empty())
return;
auto* pm = ins->module_inputs().front();
auto* pm = pw_ins->module_inputs().front();
auto pw_inputs = pw_ins->inputs();
auto ln_pos = std::find(pw_inputs.begin(), pw_inputs.end(), layernorm);
assert(ln_pos != pw_inputs.end());
pw_inputs.erase(ln_pos);
auto inputs = layernorm->inputs();
inputs.pop_back();
inputs.insert(inputs.end(), ins->inputs().begin() + 1, ins->inputs().end());
inputs.insert(inputs.end(), pw_inputs.begin(), pw_inputs.end());
m.replace_instruction(ins, layernorm->get_operator(), inputs, {pm});
m.replace_instruction(pw_ins, layernorm->get_operator(), inputs, {pm});
}
};
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment