Commit 11e155c2 authored by Paul's avatar Paul
Browse files

Merge

parents 8a9c5bce aa7ff911
celu_wrong_type_test:N
xy"Celucelu_wrong_type_testZ
x



b
y



B
\ No newline at end of file
eyelike_default_test:U

T1T2"EyeLikeeyelike_default_testZ
T1


b
T2


B
\ No newline at end of file
eyelike_double_test:T

T1T2"EyeLikeeyelike_double_testZ
T1
 

b
T2
 

B
\ No newline at end of file
eyelike_half_test:R

T1T2"EyeLikeeyelike_half_testZ
T1



b
T2



B
\ No newline at end of file
eyelike_k_outofbounds_neg_test:r
$
T1T2"EyeLike*
keyelike_k_outofbounds_neg_testZ
T1


b
T2


B
\ No newline at end of file
eyelike_k_outofbounds_pos_test:i

T1T2"EyeLike*
keyelike_k_outofbounds_pos_testZ
T1


b
T2


B
\ No newline at end of file
eyelike_k_test:Y

T1T2"EyeLike*
keyelike_k_testZ
T1


b
T2


B
\ No newline at end of file
eyelike_not_rank2_test:[

T1T2"EyeLikeeyelike_not_rank2_testZ
T1



b
T2


B
\ No newline at end of file
eyelike_set_dtype_test:e

T1T2"EyeLike*
dtype eyelike_set_dtype_testZ
T1


b
T2
 

B
\ No newline at end of file
eyelike_verify_negk_test:l
$
T1T2"EyeLike*
keyelike_verify_negk_testZ
T1


b
T2


B
\ No newline at end of file
eyelike_verify_test:^

T1T2"EyeLike*
keyelike_verify_testZ
T1


b
T2


B
\ No newline at end of file
gathernd_batch_dims_test:
/
data
indicesy"GatherND*
batch_dimsgathernd_batch_dims_testZ
data



Z
indices


b
y


B
\ No newline at end of file
 gathernd_test:q

data
indicesy"GatherND gathernd_testZ
data


Z
indices


b
y

B
\ No newline at end of file
......@@ -351,6 +351,65 @@ def ceil_test():
return ([node], [x], [y])
@onnx_test
def celu_alpha_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])
node = onnx.helper.make_node('Celu',
inputs=['x'],
outputs=['y'],
alpha=0.8)
return ([node], [x], [y])
@onnx_test
def celu_default_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])
node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test
def celu_verify_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])
node = onnx.helper.make_node('Celu',
inputs=['x'],
outputs=['y'],
alpha=0.5)
return ([node], [x], [y])
@onnx_test
def celu_wrong_type_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [2, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [2, 3])
node = onnx.helper.make_node('Celu', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test
def celu_zero_alpha_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])
node = onnx.helper.make_node('Celu',
inputs=['x'],
outputs=['y'],
alpha=0.0)
return ([node], [x], [y])
@onnx_test
def clip_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
......@@ -426,6 +485,22 @@ def clip_test_op11_no_args1():
return ([node], [x], [y])
@onnx_test
def clip_test_args_type_mismatch():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 3])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 3])
min_val = helper.make_tensor('min', TensorProto.FLOAT, [1, 3],
[1.5, 2.5, 3.5])
max_val = helper.make_tensor('max', TensorProto.INT64, [3, 1], [2, 3, 4])
node = onnx.helper.make_node('Clip',
inputs=['0', 'min', 'max'],
outputs=['1'])
return ([node], [x], [y], [min_val, max_val])
@onnx_test
def concat_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 4, 3])
......@@ -1381,6 +1456,114 @@ def expand_test():
return ([shape_const, node], [x], [y])
@onnx_test
def eyelike_default_test():
T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node(
'EyeLike',
inputs=['T1'],
outputs=['T2'],
)
return ([node], [T1], [T2])
@onnx_test
def eyelike_double_test():
T1 = helper.make_tensor_value_info('T1', TensorProto.DOUBLE, [6, 15])
T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [6, 15])
node = onnx.helper.make_node(
'EyeLike',
inputs=['T1'],
outputs=['T2'],
)
return ([node], [T1], [T2])
@onnx_test
def eyelike_half_test():
T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT16, [8, 8])
T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT16, [8, 8])
node = onnx.helper.make_node(
'EyeLike',
inputs=['T1'],
outputs=['T2'],
)
return ([node], [T1], [T2])
@onnx_test
def eyelike_k_test():
T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
return ([node], [T1], [T2])
@onnx_test
def eyelike_k_outofbounds_neg_test():
T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [2, 4])
T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [2, 4])
node = onnx.helper.make_node('EyeLike',
inputs=['T1'],
outputs=['T2'],
k=-2)
return ([node], [T1], [T2])
@onnx_test
def eyelike_k_outofbounds_pos_test():
T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=4)
return ([node], [T1], [T2])
@onnx_test
def eyelike_not_rank2_test():
T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4, 2])
T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node(
'EyeLike',
inputs=['T1'],
outputs=['T2'],
)
return ([node], [T1], [T2])
@onnx_test
def eyelike_verify_test():
T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node('EyeLike', inputs=['T1'], outputs=['T2'], k=1)
return ([node], [T1], [T2])
@onnx_test
def eyelike_verify_negk_test():
T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
T2 = helper.make_tensor_value_info('T2', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node('EyeLike',
inputs=['T1'],
outputs=['T2'],
k=-2)
return ([node], [T1], [T2])
@onnx_test
def eyelike_set_dtype_test():
T1 = helper.make_tensor_value_info('T1', TensorProto.FLOAT, [3, 4])
T2 = helper.make_tensor_value_info('T2', TensorProto.DOUBLE, [3, 4])
node = onnx.helper.make_node('EyeLike',
inputs=['T1'],
outputs=['T2'],
dtype=TensorProto.DOUBLE)
return ([node], [T1], [T2])
@onnx_test
def flatten_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3, 4, 5])
......@@ -1483,6 +1666,35 @@ def gather_elements_axis1_test():
return ([node], [x, i], [y])
@onnx_test
def gathernd_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2])
i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])
node = onnx.helper.make_node('GatherND',
inputs=['data', 'indices'],
outputs=['y'])
return ([node], [x, i], [y])
@onnx_test
def gathernd_batch_dims_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 1])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2])
node = onnx.helper.make_node(
'GatherND',
inputs=['data', 'indices'],
outputs=['y'],
batch_dims=1,
)
return ([node], [x, i], [y])
@onnx_test
def gemm_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
......@@ -1566,6 +1778,20 @@ def globalavgpool_test():
return ([node], [x], [y])
@onnx_test
def globallppool_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 1, 1])
node = onnx.helper.make_node(
'GlobalLpPool',
inputs=['0'],
outputs=['1'],
)
return ([node], [x], [y])
@onnx_test
def globalmaxpool_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 16, 16])
......@@ -2307,6 +2533,32 @@ def instance_norm_val_3d_test():
return ([node], [], [y], [x_tensor, scale_tensor, bias_tensor])
@onnx_test
def isnan_float_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT, [2, 3])
t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT, [2, 3])
node = onnx.helper.make_node(
'IsNaN',
inputs=['t1'],
outputs=['t2'],
)
return ([node], [t1], [t2])
@onnx_test
def isnan_half_test():
t1 = helper.make_tensor_value_info('t1', TensorProto.FLOAT16, [2, 3])
t2 = helper.make_tensor_value_info('t2', TensorProto.FLOAT16, [2, 3])
node = onnx.helper.make_node(
'IsNaN',
inputs=['t1'],
outputs=['t2'],
)
return ([node], [t1], [t2])
@onnx_test
def layernorm_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 1, 5])
......@@ -2595,6 +2847,96 @@ def loop_test():
return ([node], [iter, cond, a, b], [b_loop, uout])
@onnx_test
def lpnormalization_axis_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])
node = onnx.helper.make_node('LpNormalization',
inputs=['x'],
outputs=['y'],
axis=2)
return ([node], [x], [y])
@onnx_test
def lpnormalization_default_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node(
'LpNormalization',
inputs=['x'],
outputs=['y'],
axis=0,
)
return ([node], [x], [y])
@onnx_test
def lpnormalization_l1_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node(
'LpNormalization',
inputs=['x'],
outputs=['y'],
p=1,
)
return ([node], [x], [y])
@onnx_test
def lpnormalization_l2_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4])
node = onnx.helper.make_node('LpNormalization',
inputs=['x'],
outputs=['y'],
p=2)
return ([node], [x], [y])
@onnx_test
def lpnormalization_p_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3])
node = onnx.helper.make_node('LpNormalization',
inputs=['x'],
outputs=['y'],
p=3)
return ([node], [x], [y])
@onnx_test
def lppool_l1_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 3])
node = onnx.helper.make_node('LpPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3],
p=1)
return ([node], [x], [y])
@onnx_test
def lppool_l2_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 3])
node = onnx.helper.make_node('LpPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3],
p=2)
return ([node], [x], [y])
@onnx_test
def lrn_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 28, 24, 24])
......@@ -2836,6 +3178,20 @@ def mean_test():
return ([node], data, [mean])
@onnx_test
def mean_integral_test():
data = [
helper.make_tensor_value_info(str(i), TensorProto.INT32, [2, 2, 2])
for i in range(10)
]
data_names = [str(i) for i in range(10)]
mean = helper.make_tensor_value_info('mean', TensorProto.INT32, [2, 2, 2])
node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])
return ([node], data, [mean])
@onnx_test
def min_test():
a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
......@@ -4072,6 +4428,142 @@ def resize_upsample_pc_test():
return ([node], [X], [Y], [scale_tensor])
@onnx_test
def reversesequence_4D_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2, 2])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
time_axis=0,
batch_axis=1,
sequence_lens=[2, 1],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_batch_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
seq_lens = np.array([1, 2, 3, 4])
seq_lens_tensor = helper.make_tensor(
name="sequence_lens",
data_type=TensorProto.INT64,
dims=seq_lens.shape,
vals=seq_lens.astype(np.int64),
)
arg_seq_lens = helper.make_node(
"Constant",
inputs=[],
outputs=['arg_seq_lens'],
value=seq_lens_tensor,
)
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x', 'arg_seq_lens'],
outputs=['y'],
time_axis=1,
batch_axis=0,
)
return ([arg_seq_lens, node], [x], [y])
@onnx_test
def reversesequence_batch_axis_err_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
time_axis=0,
batch_axis=2,
sequence_lens=[4, 3, 2, 1],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_rank_err_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
sequence_lens=[4, 3, 2, 1],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_sequence_lens_shape_err_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
sequence_lens=[4, 3, 2],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_same_axis_err_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
time_axis=1,
batch_axis=1,
sequence_lens=[4, 3, 2, 1],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_time_axis_err_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2, 3])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
time_axis=3,
batch_axis=0,
sequence_lens=[4, 3, 2, 1],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_time_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
time_axis=0,
batch_axis=1,
sequence_lens=[4, 3, 2, 1],
)
return ([node], [x], [y])
@onnx_test
def roialign_default_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 4, 7, 8])
......@@ -4108,7 +4600,47 @@ def roialign_test():
@onnx_test
def scatter_test():
def scatter_add_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
i = helper.make_tensor_value_info('indices', TensorProto.INT32,
[2, 3, 4, 5])
u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
[2, 3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])
node = onnx.helper.make_node(
'ScatterElements',
reduction='add',
inputs=['data', 'indices', 'update'],
outputs=['y'],
axis=-2,
)
return ([node], [x, i, u], [y])
@onnx_test
def scatter_mul_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
i = helper.make_tensor_value_info('indices', TensorProto.INT32,
[2, 3, 4, 5])
u = helper.make_tensor_value_info('update', TensorProto.FLOAT,
[2, 3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])
node = onnx.helper.make_node(
'ScatterElements',
reduction='mul',
inputs=['data', 'indices', 'update'],
outputs=['y'],
axis=-2,
)
return ([node], [x, i, u], [y])
@onnx_test
def scatter_none_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [3, 4, 5, 6])
i = helper.make_tensor_value_info('indices', TensorProto.INT32,
[2, 3, 4, 5])
......@@ -4117,7 +4649,8 @@ def scatter_test():
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5, 6])
node = onnx.helper.make_node(
'Scatter',
'ScatterElements',
reduction='none',
inputs=['data', 'indices', 'update'],
outputs=['y'],
axis=-2,
......@@ -4126,6 +4659,59 @@ def scatter_test():
return ([node], [x, i, u], [y])
@onnx_test
def scatternd_add_test():
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
[2, 1, 2])
updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
[2, 1, 2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
[2, 2, 2])
node = onnx.helper.make_node('ScatterND',
inputs=['data', 'indices', 'updates'],
outputs=['output'],
reduction="add")
return ([node], [data, indices, updates], [output])
@onnx_test
def scatternd_mul_test():
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
[2, 1, 2])
updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
[2, 1, 2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
[2, 2, 2])
node = onnx.helper.make_node('ScatterND',
inputs=['data', 'indices', 'updates'],
outputs=['output'],
reduction="mul")
return ([node], [data, indices, updates], [output])
@onnx_test
def scatternd_test():
data = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
indices = helper.make_tensor_value_info('indices', TensorProto.INT64,
[2, 1, 2])
updates = helper.make_tensor_value_info('updates', TensorProto.FLOAT,
[2, 1, 2])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
[2, 2, 2])
node = onnx.helper.make_node('ScatterND',
inputs=['data', 'indices', 'updates'],
outputs=['output'])
return ([node], [data, indices, updates], [output])
@onnx_test
def selu_test():
x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [2, 3])
......@@ -4231,6 +4817,54 @@ def sinh_test():
return ([node], [x], [y])
@onnx_test
def size_float_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
node = onnx.helper.make_node(
'Size',
inputs=['x'],
outputs=['y'],
)
return ([node], [x], [y])
@onnx_test
def size_half_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 1])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
node = onnx.helper.make_node(
'Size',
inputs=['x'],
outputs=['y'],
)
return ([node], [x], [y])
@onnx_test
def size_int_test():
x = helper.make_tensor_value_info('x', TensorProto.INT32, [8, 2, 3])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
node = onnx.helper.make_node(
'Size',
inputs=['x'],
outputs=['y'],
)
return ([node], [x], [y])
@onnx_test
def size_verify_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5, 3])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [1])
node = onnx.helper.make_node(
'Size',
inputs=['x'],
outputs=['y'],
)
return ([node], [x], [y])
@onnx_test
def slice_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3, 2])
......
globallppool_test:c

01" GlobalLpPoolgloballppool_testZ
0




b
1




B
\ No newline at end of file
isnan_float_test:O

t1t2"IsNaNisnan_float_testZ
t1


b
t2


B
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment