Unverified Commit 0e928f88 authored by Paul Fultz II's avatar Paul Fultz II Committed by GitHub
Browse files

Merge branch 'develop' into driver

parents 9d3d1d66 5a33a3f9
...@@ -30,7 +30,7 @@ struct logsoftmax ...@@ -30,7 +30,7 @@ struct logsoftmax
shape compute_shape(std::vector<shape> inputs) const shape compute_shape(std::vector<shape> inputs) const
{ {
check_shapes{inputs}.has(1).standard(); check_shapes{inputs}.has(1).standard();
if(axis < 0 || axis > inputs[0].lens().size()) if(axis < 0 || axis >= inputs[0].lens().size())
{ {
MIGRAPHX_THROW("LogSoftMax: input axis value " + std::to_string(axis) + MIGRAPHX_THROW("LogSoftMax: input axis value " + std::to_string(axis) +
" is out of range"); " is out of range");
......
...@@ -18,10 +18,23 @@ namespace op { ...@@ -18,10 +18,23 @@ namespace op {
struct softmax struct softmax
{ {
int axis = 1;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.axis, "axis"));
}
std::string name() const { return "softmax"; } std::string name() const { return "softmax"; }
shape compute_shape(std::vector<shape> inputs) const shape compute_shape(std::vector<shape> inputs) const
{ {
check_shapes{inputs}.has(1).only_dims(4); check_shapes{inputs}.has(1).standard();
if(axis < 0 || axis >= inputs[0].lens().size())
{
MIGRAPHX_THROW("SoftMax: input axis value " + std::to_string(axis) +
" is out of range");
}
return inputs.at(0); return inputs.at(0);
} }
}; };
......
#ifndef MIGRAPHX_GUARD_OPERATORS_PAD_CALC_HPP
#define MIGRAPHX_GUARD_OPERATORS_PAD_CALC_HPP
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
inline std::size_t calculate_padding(std::size_t weight_dim, std::size_t dilation)
{
return (dilation * (weight_dim - 1)) / 2;
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -517,40 +517,60 @@ struct cpu_unary ...@@ -517,40 +517,60 @@ struct cpu_unary
} }
}; };
struct softmax2d struct cpu_softmax
{ {
std::string name() const { return "cpu::softmax2d"; } op::softmax op;
shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
argument compute(context&, const shape& output_shape, std::vector<argument> args) const template <class Self, class F>
{ static auto reflect(Self& self, F f)
argument result{output_shape};
visit_all(result, args[0])([&](auto output, auto input) {
using value_type = typename decltype(input)::value_type;
auto nb = input.get_shape().lens()[0];
auto nc = input.get_shape().lens()[1];
auto nh = input.get_shape().lens()[2];
auto nw = input.get_shape().lens()[3];
dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
value_type cmax = std::numeric_limits<value_type>::lowest();
for(std::size_t c = 0; c < nc; c++)
{
cmax = std::max(cmax, input(b, c, i, j));
}
for(std::size_t c = 0; c < nc; c++)
{ {
output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax); return migraphx::reflect(self.op, f);
} }
value_type sum = value_type(0);
for(std::size_t c = 0; c < nc; c++) std::string name() const { return "cpu::softmax"; }
shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
template <typename T>
std::size_t compute_batch_index(T idx, shape& batch_shape, int axis) const
{ {
sum += output(b, c, i, j); idx[axis] = 0;
return batch_shape.index(idx);
} }
for(std::size_t c = 0; c < nc; c++)
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
{ {
output(b, c, i, j) = output(b, c, i, j) / sum; argument result{output_shape};
} auto batch_lens = output_shape.lens();
batch_lens[op.axis] = 1;
shape batch_shape{shape::int32_type, batch_lens};
visit_all(result, args[0])([&](auto output, auto input) {
using value_type = typename decltype(input)::value_type;
std::vector<value_type> batch_max(batch_shape.elements(),
std::numeric_limits<value_type>::lowest());
shape_for_each(output_shape, [&](auto idx) {
auto index = this->compute_batch_index(idx, batch_shape, op.axis);
batch_max[index] = std::max(batch_max[index], input(idx.begin(), idx.end()));
});
shape_for_each(output_shape, [&](auto idx) {
auto index = this->compute_batch_index(idx, batch_shape, op.axis);
output(idx.begin(), idx.end()) =
std::exp(input(idx.begin(), idx.end()) - batch_max[index]);
});
std::vector<value_type> batch_sum(batch_shape.elements(), value_type(0));
shape_for_each(output_shape, [&](auto idx) {
auto index = this->compute_batch_index(idx, batch_shape, op.axis);
batch_sum[index] += output(idx.begin(), idx.end());
});
shape_for_each(output_shape, [&](auto idx) {
auto index = this->compute_batch_index(idx, batch_shape, op.axis);
output(idx.begin(), idx.end()) /= batch_sum[index];
}); });
}); });
return result; return result;
} }
}; };
...@@ -569,33 +589,19 @@ struct cpu_logsoftmax ...@@ -569,33 +589,19 @@ struct cpu_logsoftmax
shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); } shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
template <typename T> template <typename T>
std::size_t compute_batch_index(const T& idx, shape& batch_shape, int axis) const std::size_t compute_batch_index(T idx, const shape& batch_shape, int axis) const
{ {
if(axis == 0) idx[axis] = 0;
{ return batch_shape.index(idx);
return 0;
}
else
{
std::vector<std::size_t> batch_idx(idx.begin(), idx.begin() + axis);
return batch_shape.index(batch_idx.begin(), batch_idx.end());
}
} }
argument compute(context&, const shape& output_shape, std::vector<argument> args) const argument compute(context&, const shape& output_shape, std::vector<argument> args) const
{ {
argument result{output_shape}; argument result{output_shape};
auto lens = output_shape.lens(); auto batch_lens = output_shape.lens();
std::vector<std::size_t> batch_lens{}; batch_lens[op.axis] = 1;
if(op.axis == 0) shape batch_shape{shape::int32_type, batch_lens};
{
batch_lens.push_back(1);
}
else
{
batch_lens.insert(batch_lens.begin(), lens.begin(), lens.begin() + op.axis);
}
shape batch_shape{migraphx::shape::uint32_type, batch_lens};
visit_all(result, args[0])([&](auto output, auto input) { visit_all(result, args[0])([&](auto output, auto input) {
using value_type = typename decltype(input)::value_type; using value_type = typename decltype(input)::value_type;
std::vector<value_type> batch_max(batch_shape.elements(), std::vector<value_type> batch_max(batch_shape.elements(),
...@@ -660,7 +666,7 @@ struct cpu_apply ...@@ -660,7 +666,7 @@ struct cpu_apply
apply_map["logsoftmax"] = extend_op<cpu_logsoftmax, op::logsoftmax>(); apply_map["logsoftmax"] = extend_op<cpu_logsoftmax, op::logsoftmax>();
apply_map["lrn"] = extend_op<cpu_lrn, op::lrn>(); apply_map["lrn"] = extend_op<cpu_lrn, op::lrn>();
apply_map["pad"] = extend_op<cpu_pad, op::pad>(); apply_map["pad"] = extend_op<cpu_pad, op::pad>();
apply_map["softmax"] = simple_op<softmax2d>(); apply_map["softmax"] = extend_op<cpu_softmax, op::softmax>();
} }
void apply() void apply()
......
...@@ -27,6 +27,7 @@ add_library(migraphx_device ...@@ -27,6 +27,7 @@ add_library(migraphx_device
device/add_relu.cpp device/add_relu.cpp
device/contiguous.cpp device/contiguous.cpp
device/logsoftmax.cpp device/logsoftmax.cpp
device/softmax.cpp
device/convert.cpp device/convert.cpp
device/mul.cpp device/mul.cpp
device/concat.cpp device/concat.cpp
......
...@@ -18,48 +18,57 @@ argument logsoftmax(hipStream_t stream, ...@@ -18,48 +18,57 @@ argument logsoftmax(hipStream_t stream,
{ {
auto lens = output_shape.lens(); auto lens = output_shape.lens();
std::size_t batch_size = std::accumulate( auto num_in_batch = lens[axis];
lens.begin(), lens.begin() + axis, std::size_t{1}, std::multiplies<std::size_t>()); auto batch_lens = lens;
std::size_t n_dims = std::accumulate( batch_lens[axis] = 1;
lens.begin() + axis, lens.end(), std::size_t{1}, std::multiplies<std::size_t>()); migraphx::shape batch_shape{output_shape.type(), batch_lens};
migraphx::shape comp_shape{output_shape.type(), {batch_size, n_dims}};
visit_all(args.back(), args.front())([&](auto output, auto input) { visit_all(args.back(), args.front())([&](auto output, auto input) {
const auto* input_ptr = device_cast(input.data()); const auto* input_ptr = device_cast(input.data());
auto* output_ptr = device_cast(output.data()); auto* output_ptr = device_cast(output.data());
visit_tensor_size(batch_shape.lens().size(), [&](auto n_dim) {
hip_tensor_descriptor<n_dim> desc_batch(batch_shape);
hip_tensor_descriptor<n_dim> desc_data(output_shape);
// each thread is for one item in the batch // each thread is for one item in the batch
gs_launch(stream, batch_size)([=](auto i) { gs_launch(stream, batch_shape.elements())([=](auto i) {
std::size_t row_start = i * n_dims; auto batch_idx = desc_batch.multi(i);
auto data_idx = batch_idx;
// get max // get max
auto batch_max = input_ptr[row_start]; auto batch_max = input_ptr[desc_data.linear(batch_idx)];
for(std::size_t j = 1; j < n_dims; ++j) for(std::size_t j = 1; j < num_in_batch; ++j)
{ {
auto ind = row_start + j; data_idx[axis] = j;
batch_max = std::max(to_hip_type(batch_max), to_hip_type(input_ptr[ind])); size_t idx = desc_data.linear(data_idx);
batch_max = std::max(to_hip_type(batch_max), to_hip_type(input_ptr[idx]));
} }
for(std::size_t j = 0; j < n_dims; ++j) for(std::size_t j = 0; j < num_in_batch; ++j)
{ {
auto ind = row_start + j; data_idx[axis] = j;
output_ptr[ind] = input_ptr[ind] - batch_max; size_t idx = desc_data.linear(data_idx);
output_ptr[idx] = input_ptr[idx] - batch_max;
} }
auto batch_sum = ::exp(to_hip_type(output_ptr[row_start])); auto batch_sum = ::exp(to_hip_type(output_ptr[desc_data.linear(batch_idx)]));
for(std::size_t j = 1; j < n_dims; ++j) for(std::size_t j = 1; j < num_in_batch; ++j)
{ {
auto ind = row_start + j; data_idx[axis] = j;
batch_sum += ::exp(to_hip_type(output_ptr[ind])); size_t idx = desc_data.linear(data_idx);
batch_sum += ::exp(to_hip_type(output_ptr[idx]));
} }
batch_sum = ::log(to_hip_type(batch_sum)); batch_sum = ::log(to_hip_type(batch_sum));
for(std::size_t j = 0; j < n_dims; ++j) for(std::size_t j = 0; j < num_in_batch; ++j)
{ {
auto ind = row_start + j; data_idx[axis] = j;
output_ptr[ind] -= batch_sum; size_t idx = desc_data.linear(data_idx);
output_ptr[idx] -= batch_sum;
} }
}); });
}); });
});
return args.back(); return args.back();
} }
......
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/softmax.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/hip.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
argument softmax(hipStream_t stream,
const migraphx::shape& output_shape,
std::vector<migraphx::argument> args,
int axis)
{
auto lens = output_shape.lens();
auto batch_lens = lens;
size_t n_dims = lens[axis];
batch_lens[axis] = 1;
migraphx::shape batch_shape{shape::int32_type, batch_lens};
visit_all(args.back(), args.front())([&](auto output, auto input) {
const auto* input_ptr = device_cast(input.data());
auto* output_ptr = device_cast(output.data());
visit_tensor_size(batch_shape.lens().size(), [&](auto n_dim) {
hip_tensor_descriptor<n_dim> desc_batch(batch_shape);
hip_tensor_descriptor<n_dim> desc_data(output_shape);
// each thread is for one item in the batch
gs_launch(stream, batch_shape.elements())([=](auto i) {
auto batch_idx = desc_batch.multi(i);
auto data_idx = batch_idx;
// get max
auto batch_max = input_ptr[desc_data.linear(batch_idx)];
for(std::size_t j = 1; j < n_dims; ++j)
{
data_idx[axis] = j;
batch_max = std::max(to_hip_type(batch_max),
to_hip_type(input_ptr[desc_data.linear(data_idx)]));
}
for(std::size_t j = 0; j < n_dims; ++j)
{
data_idx[axis] = j;
auto idx = desc_data.linear(data_idx);
output_ptr[idx] = input_ptr[idx] - batch_max;
}
for(std::size_t j = 0; j < n_dims; ++j)
{
data_idx[axis] = j;
auto idx = desc_data.linear(data_idx);
output_ptr[idx] = exp(to_hip_type(output_ptr[idx]));
}
auto batch_sum = output_ptr[desc_data.linear(batch_idx)];
for(std::size_t j = 1; j < n_dims; ++j)
{
data_idx[axis] = j;
batch_sum += output_ptr[desc_data.linear(data_idx)];
}
for(std::size_t j = 0; j < n_dims; ++j)
{
data_idx[axis] = j;
auto idx = desc_data.linear(data_idx);
output_ptr[idx] = output_ptr[idx] / batch_sum;
}
});
});
});
return args.back();
}
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_SOFTMAX_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_SOFTMAX_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
argument softmax(hipStream_t stream,
const migraphx::shape& output_shape,
std::vector<migraphx::argument> args,
int axis);
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP #ifndef MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP
#define MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP #define MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP
#include <migraphx/shape.hpp> #include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op/softmax.hpp> #include <migraphx/op/softmax.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/contiguous.hpp>
#include <migraphx/gpu/device/add.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/context.hpp>
#include <utility>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -30,6 +44,26 @@ struct miopen_softmax ...@@ -30,6 +44,26 @@ struct miopen_softmax
} }
}; };
struct hip_softmax
{
op::softmax op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "gpu::softmax"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
} // namespace gpu } // namespace gpu
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
......
...@@ -99,7 +99,7 @@ struct miopen_apply ...@@ -99,7 +99,7 @@ struct miopen_apply
add_extend_op<miopen_gemm, op::dot>("dot"); add_extend_op<miopen_gemm, op::dot>("dot");
add_extend_op<miopen_contiguous, op::contiguous>("contiguous"); add_extend_op<miopen_contiguous, op::contiguous>("contiguous");
add_extend_op<hip_concat, op::concat>("concat"); add_extend_op<hip_concat, op::concat>("concat");
add_extend_op<miopen_softmax, op::softmax>("softmax"); add_extend_op<hip_softmax, op::softmax>("softmax");
add_extend_op<hip_logsoftmax, op::logsoftmax>("logsoftmax"); add_extend_op<hip_logsoftmax, op::logsoftmax>("logsoftmax");
add_extend_op<hip_gather, op::gather>("gather"); add_extend_op<hip_gather, op::gather>("gather");
add_extend_op<hip_pad, op::pad>("pad"); add_extend_op<hip_pad, op::pad>("pad");
......
#include <migraphx/gpu/softmax.hpp> #include <migraphx/gpu/softmax.hpp>
#include <migraphx/gpu/device/softmax.hpp>
#include <migraphx/gpu/context.hpp> #include <migraphx/gpu/context.hpp>
namespace migraphx { namespace migraphx {
...@@ -30,6 +31,19 @@ argument miopen_softmax::compute(context& ctx, ...@@ -30,6 +31,19 @@ argument miopen_softmax::compute(context& ctx,
return args[1]; return args[1];
} }
shape hip_softmax::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(2).standard();
return op.compute_shape({inputs.at(0)});
}
argument hip_softmax::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
return device::softmax(ctx.get_stream().get(), output_shape, args, op.axis);
}
} // namespace gpu } // namespace gpu
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
...@@ -17,6 +17,7 @@ ...@@ -17,6 +17,7 @@
#include <migraphx/instruction.hpp> #include <migraphx/instruction.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/tf.hpp> #include <migraphx/tf.hpp>
#include <migraphx/pad_calc.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -24,7 +25,7 @@ inline namespace MIGRAPHX_INLINE_NS { ...@@ -24,7 +25,7 @@ inline namespace MIGRAPHX_INLINE_NS {
struct tf_parser struct tf_parser
{ {
using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>; using attribute_map = std::unordered_map<std::string, tensorflow::AttrValue>;
using node_map = std::unordered_map<std::string, tensorflow::NodeDef>; using node_map = std::map<std::string, tensorflow::NodeDef>;
// using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>; // using input_node_map = std::unordered_map<std::string, std::unordered_set<std::string>>;
using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>; using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
...@@ -277,29 +278,6 @@ struct tf_parser ...@@ -277,29 +278,6 @@ struct tf_parser
parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args) parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{ {
op::convolution op; op::convolution op;
if(contains(attributes, "padding"))
{
const std::string& pad_mode = attributes.at("padding").s();
if(pad_mode.find("SAME") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::same;
}
else if(pad_mode.find("EXPLICIT") != std::string::npos)
{
std::vector<size_t> padding;
copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
if(padding.size() != 4)
{
MIGRAPHX_THROW("padding should have 4 values");
}
if(padding[0] != padding[2] || padding[1] != padding[3])
{
MIGRAPHX_THROW("migraphx does not support asymetric padding");
}
op.padding[0] = padding[0];
op.padding[1] = padding[1];
}
}
if(contains(attributes, "strides")) if(contains(attributes, "strides"))
{ {
std::vector<size_t> stride; std::vector<size_t> stride;
...@@ -339,6 +317,39 @@ struct tf_parser ...@@ -339,6 +317,39 @@ struct tf_parser
} }
} }
if(contains(attributes, "padding"))
{
const std::string& pad_mode = attributes.at("padding").s();
if(pad_mode.find("SAME") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::same;
std::vector<size_t> weight_dims = weights->get_shape().lens();
size_t weight_h = weight_dims[2];
size_t weight_w = weight_dims[3];
op.padding[0] = calculate_padding(weight_h, op.dilation[0]);
op.padding[1] = calculate_padding(weight_w, op.dilation[1]);
}
else if(pad_mode.find("VALID") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::valid;
}
else if(pad_mode.find("EXPLICIT") != std::string::npos)
{
std::vector<size_t> padding;
copy(attributes.at("explicit_paddings").list().i(), std::back_inserter(padding));
if(padding.size() != 4)
{
MIGRAPHX_THROW("padding should have 4 values");
}
if(padding[0] != padding[2] || padding[1] != padding[3])
{
MIGRAPHX_THROW("migraphx does not support asymetric padding");
}
op.padding[0] = padding[0];
op.padding[1] = padding[1];
}
}
return prog.add_instruction(op, {args[0], weights}); return prog.add_instruction(op, {args[0], weights});
} }
...@@ -349,14 +360,7 @@ struct tf_parser ...@@ -349,14 +360,7 @@ struct tf_parser
op::convolution op; op::convolution op;
size_t num_channels = args[0]->get_shape().lens()[1]; size_t num_channels = args[0]->get_shape().lens()[1];
op.group = num_channels; op.group = num_channels;
if(contains(attributes, "padding"))
{
const std::string& pad_mode = attributes.at("padding").s();
if(pad_mode.find("SAME") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::same;
}
}
if(contains(attributes, "strides")) if(contains(attributes, "strides"))
{ {
std::vector<size_t> stride; std::vector<size_t> stride;
...@@ -369,6 +373,19 @@ struct tf_parser ...@@ -369,6 +373,19 @@ struct tf_parser
op.stride[0] = stride[2]; op.stride[0] = stride[2];
op.stride[1] = stride[3]; op.stride[1] = stride[3];
} }
if(contains(attributes, "dilations"))
{
std::vector<size_t> dilation;
copy(attributes.at("dilations").list().i(), std::back_inserter(dilation));
reorder_data(dilation);
if(dilation.size() != 4)
{
MIGRAPHX_THROW("dilation should have 4 values");
}
op.dilation[0] = dilation[2];
op.dilation[1] = dilation[3];
}
auto weights = args[1]; auto weights = args[1];
// check if weights are from a constant // check if weights are from a constant
if(weights->name() != "@param") if(weights->name() != "@param")
...@@ -383,6 +400,24 @@ struct tf_parser ...@@ -383,6 +400,24 @@ struct tf_parser
} }
} }
if(contains(attributes, "padding"))
{
const std::string& pad_mode = attributes.at("padding").s();
std::vector<size_t> weight_dims = weights->get_shape().lens();
size_t weight_h = weight_dims[2];
size_t weight_w = weight_dims[3];
if(pad_mode.find("SAME") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::same;
op.padding[0] = calculate_padding(weight_h, op.dilation[0]);
op.padding[1] = calculate_padding(weight_w, op.dilation[1]);
}
else if(pad_mode.find("VALID") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::valid;
}
}
std::vector<int64_t> new_weights_shape; std::vector<int64_t> new_weights_shape;
copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape)); copy(weights->get_shape().lens(), std::back_inserter(new_weights_shape));
...@@ -508,18 +543,6 @@ struct tf_parser ...@@ -508,18 +543,6 @@ struct tf_parser
{ {
op::pooling op{starts_with(name, "Max") ? "max" : "average"}; op::pooling op{starts_with(name, "Max") ? "max" : "average"};
if(contains(attributes, "padding"))
{
const std::string& pad_mode = attributes.at("padding").s();
if(pad_mode.find("SAME") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::same;
}
else if(pad_mode.find("VALID") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::valid;
}
}
if(contains(attributes, "strides")) if(contains(attributes, "strides"))
{ {
std::vector<size_t> stride; std::vector<size_t> stride;
...@@ -544,6 +567,20 @@ struct tf_parser ...@@ -544,6 +567,20 @@ struct tf_parser
op.lengths[0] = ksize[2]; op.lengths[0] = ksize[2];
op.lengths[1] = ksize[3]; op.lengths[1] = ksize[3];
} }
if(contains(attributes, "padding"))
{
const std::string& pad_mode = attributes.at("padding").s();
if(pad_mode.find("SAME") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::same;
op.padding[0] = calculate_padding(op.lengths[0], 1);
op.padding[1] = calculate_padding(op.lengths[1], 1);
}
else if(pad_mode.find("VALID") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::valid;
}
}
return prog.add_instruction(op, args[0]); return prog.add_instruction(op, args[0]);
} }
......
...@@ -929,6 +929,24 @@ TEST_CASE(maxpool_test) ...@@ -929,6 +929,24 @@ TEST_CASE(maxpool_test)
EXPECT(migraphx::verify_range(results_vector, c)); EXPECT(migraphx::verify_range(results_vector, c));
} }
TEST_CASE(softmax_simple_test)
{
migraphx::program p;
std::vector<float> a = {0.25, 0.75};
std::vector<float> s = {0.377541, 0.622459};
migraphx::shape a_shape{migraphx::shape::float_type, {1, 2}};
auto al = p.add_literal(migraphx::literal{a_shape, a});
p.add_instruction(migraphx::op::softmax{1}, al);
p.compile(migraphx::cpu::target{});
auto result = p.eval({});
std::vector<float> results_vector(2);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
for(auto v : results_vector)
std::cout << v << "\t";
std::cout << std::endl;
EXPECT(migraphx::verify_range(results_vector, s));
}
TEST_CASE(softmax_test) TEST_CASE(softmax_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -1002,14 +1020,13 @@ TEST_CASE(logsoftmax_test_axis_0) ...@@ -1002,14 +1020,13 @@ TEST_CASE(logsoftmax_test_axis_0)
-0.99628491, 1.04314606, -1.22943315, 0.76930403, 0.31106618}; -0.99628491, 1.04314606, -1.22943315, 0.76930403, 0.31106618};
std::vector<float> s = { std::vector<float> s = {
-2.71138556, -5.85030702, -3.74063578, -4.22915517, -6.15821977, -5.96072346, -3.57208097, -0.135261, -2.843968, -0.659995, -0.488413, -1.051857, -2.812936, -0.250956, -0.353985,
-5.78313166, -5.51435497, -3.67224195, -3.88393048, -2.57061599, -5.54431083, -6.27880025, -1.155980, -0.603651, -0.211969, -0.175371, -1.336552, -3.885010, -1.871544, -0.837083,
-5.1878749, -6.1318955, -5.29178545, -4.22537886, -3.75693516, -7.07047099, -4.45763333, -0.887745, -0.433338, -1.158864, -4.911197, -1.147972, -0.666711, -0.996874, -0.981418,
-4.66281846, -6.18290503, -4.11886536, -6.17408292, -4.18030052, -4.64570814, -4.64354473, -0.851145, -0.853988, -0.858112, -2.067420, -0.059956, -0.727436, -0.950881, -0.429689,
-3.06629525, -3.80807681, -4.69162374, -5.53605222, -3.20969275, -4.82645674, -6.63942356, -0.061906, -1.505332, -1.210277, -0.377970, -0.791448, -1.655428, -1.827253, -0.304828,
-4.73634471, -3.86003866, -5.32738981, -4.22249802, -4.51258693, -2.41455206, -3.48343199, -0.020762, -0.167101, -0.567346, -0.530319, -1.045094, -0.376648, -0.007391, -0.381670,
-5.86215889, -4.93435935, -4.83713408, -2.97471885, -2.16666459, -3.69133151, -4.71640968, -0.720302, -0.460499, -0.469651, -0.556740, -0.554628, -0.551582};
-5.64652924, -3.60709827, -5.87967748, -3.8809403, -4.33917815};
migraphx::shape a_shape{migraphx::shape::float_type, {2, 3, 3, 3}}; migraphx::shape a_shape{migraphx::shape::float_type, {2, 3, 3, 3}};
auto al = p.add_literal(migraphx::literal{a_shape, a}); auto al = p.add_literal(migraphx::literal{a_shape, a});
...@@ -1036,14 +1053,13 @@ TEST_CASE(logsoftmax_test_axis_1) ...@@ -1036,14 +1053,13 @@ TEST_CASE(logsoftmax_test_axis_1)
-0.99628491, 1.04314606, -1.22943315, 0.76930403, 0.31106618}; -0.99628491, 1.04314606, -1.22943315, 0.76930403, 0.31106618};
std::vector<float> s = { std::vector<float> s = {
-1.77931988, -4.91824134, -2.80857010, -3.29708949, -5.22615409, -5.02865778, -2.64001529, -0.550468, -2.132973, -1.549746, -0.650533, -1.051529, -2.248570, -0.141017, -2.028357,
-4.85106598, -4.58228929, -2.74017627, -2.95186480, -1.63855031, -4.61224515, -5.34673457, -1.947730, -1.511324, -0.166597, -0.379726, -1.965689, -1.172109, -1.475721, -2.700831,
-4.25580922, -5.19982982, -4.35971977, -3.29331318, -2.82486948, -6.13840531, -3.52556765, -1.537011, -0.658754, -1.596017, -3.353137, -2.266743, -1.084197, -1.076214, -0.406712,
-3.73075278, -5.25083935, -3.18679968, -5.24201724, -3.24823484, -3.71364246, -4.14309917, -2.743019, -0.425526, -1.079083, -2.139486, -1.270584, -1.024088, -1.154231, -3.201762,
-2.56584969, -3.30763125, -4.19117818, -5.03560666, -2.70924719, -4.32601118, -6.13897800, -0.888957, -0.532855, -3.103583, -1.221339, -1.355980, -3.531678, -1.438510, -0.975194,
-4.23589915, -3.35959310, -4.82694425, -3.72205246, -4.01214137, -1.91410650, -2.98298643, -0.080261, -1.162697, -1.568557, -1.398519, -1.322129, -0.470660, -0.370953, -0.907343,
-5.36171333, -4.43391379, -4.33668852, -2.47427329, -1.66621903, -3.19088595, -4.21596412, -1.179017, -3.312239, -1.286363, -1.586076, -0.345100, -0.824173};
-5.14608368, -3.10665271, -5.37923192, -3.38049474, -3.83873259};
migraphx::shape a_shape{migraphx::shape::float_type, {2, 3, 3, 3}}; migraphx::shape a_shape{migraphx::shape::float_type, {2, 3, 3, 3}};
auto al = p.add_literal(migraphx::literal{a_shape, a}); auto al = p.add_literal(migraphx::literal{a_shape, a});
...@@ -1070,14 +1086,13 @@ TEST_CASE(logsoftmax_test_axis_2) ...@@ -1070,14 +1086,13 @@ TEST_CASE(logsoftmax_test_axis_2)
-0.99628491, 1.04314606, -1.22943315, 0.76930403, 0.31106618}; -0.99628491, 1.04314606, -1.22943315, 0.76930403, 0.31106618};
std::vector<float> s = { std::vector<float> s = {
-0.79763715, -3.93655861, -1.82688737, -2.31540676, -4.24447136, -4.04697505, -1.65833256, -0.495957, -1.031212, -0.245531, -2.013726, -1.339125, -2.465619, -1.356652, -0.964037,
-3.86938325, -3.60060656, -1.81223672, -2.02392525, -0.71061076, -3.68430560, -4.41879502, -2.019250, -0.214522, -0.289569, -0.234392, -2.086591, -2.684439, -2.851651, -2.674176,
-3.32786967, -4.27189027, -3.43178022, -2.36537363, -1.35498658, -4.66852241, -2.05568475, -1.697424, -1.889155, -0.401029, -3.064586, -1.173030, -1.306912, -2.177020, -0.834262,
-2.26086988, -3.78095645, -1.71691678, -3.77213434, -1.77835194, -2.24375956, -2.74631770, -2.818177, -0.174415, -1.361105, -1.024571, -0.106766, -1.167645, -1.072650, -2.576522,
-1.16906822, -1.91084978, -2.79439671, -3.63882519, -1.31246572, -2.92922971, -4.74219653, -0.569261, -1.207483, -3.679894, -2.095913, -0.504264, -3.039291, -1.290559, -1.156812,
-2.83911768, -2.19738500, -3.66473615, -2.55984436, -2.84993327, -0.75189840, -1.82077833, -0.126453, -0.551493, -2.506384, -2.646261, -1.905195, -0.206994, -0.191369, -0.959754,
-4.19950523, -3.27170569, -3.17448042, -1.65286841, -0.84481415, -2.36948107, -3.39455924, -1.948685, -3.671233, -0.875521, -3.111952, -1.905644, -1.6076011};
-4.32467880, -2.28524783, -4.55782704, -2.55908986, -3.01732771};
migraphx::shape a_shape{migraphx::shape::float_type, {2, 3, 3, 3}}; migraphx::shape a_shape{migraphx::shape::float_type, {2, 3, 3, 3}};
auto al = p.add_literal(migraphx::literal{a_shape, a}); auto al = p.add_literal(migraphx::literal{a_shape, a});
...@@ -1104,14 +1119,13 @@ TEST_CASE(logsoftmax_test_axis_3) ...@@ -1104,14 +1119,13 @@ TEST_CASE(logsoftmax_test_axis_3)
-0.99628491, 1.04314606, -1.22943315, 0.76930403, 0.31106618}; -0.99628491, 1.04314606, -1.22943315, 0.76930403, 0.31106618};
std::vector<float> s = { std::vector<float> s = {
-0.33690375, -3.47582521, -1.36615397, -0.27936556, -2.20843016, -2.01093385, -0.22551114, -0.336904, -3.475825, -1.366154, -0.279366, -2.208430, -2.010934, -0.225511, -2.436562,
-2.43656183, -2.16778514, -1.57241522, -1.78410375, -0.47078926, -1.06745881, -1.80194823, -2.167785, -1.572415, -1.784104, -0.470789, -1.067459, -1.801948, -0.711023, -2.307197,
-0.71102288, -2.30719726, -1.46708721, -0.40068062, -0.42698261, -3.74051844, -1.12768078, -1.467087, -0.400681, -0.426983, -3.740518, -1.127681, -1.078919, -2.599005, -0.534965,
-1.07891856, -2.59900513, -0.53496546, -2.56139951, -0.56761711, -1.03302473, -2.09771276, -2.561400, -0.567617, -1.033025, -2.097713, -0.520463, -1.262245, -1.763230, -2.607658,
-0.52046328, -1.26224484, -1.76322959, -2.60765807, -0.28129860, -0.81424303, -2.62720985, -0.281299, -0.814243, -2.627210, -0.724131, -0.655704, -2.123055, -1.018163, -2.480634,
-0.72413100, -0.65570381, -2.12305496, -1.01816317, -2.48063402, -0.38259915, -1.45147908, -0.382599, -1.451479, -1.843102, -0.915303, -0.818078, -1.316929, -0.508875, -2.033541,
-1.84310238, -0.91530284, -0.81807757, -1.31692881, -0.50887455, -2.03354147, -1.48767160, -1.487672, -2.417791, -0.378360, -2.568531, -0.569794, -1.028032};
-2.41779116, -0.37836019, -2.56853147, -0.56979429, -1.02803214};
migraphx::shape a_shape{migraphx::shape::float_type, {2, 3, 3, 3}}; migraphx::shape a_shape{migraphx::shape::float_type, {2, 3, 3, 3}};
auto al = p.add_literal(migraphx::literal{a_shape, a}); auto al = p.add_literal(migraphx::literal{a_shape, a});
...@@ -1124,40 +1138,6 @@ TEST_CASE(logsoftmax_test_axis_3) ...@@ -1124,40 +1138,6 @@ TEST_CASE(logsoftmax_test_axis_3)
EXPECT(migraphx::verify_range(results_vector, s)); EXPECT(migraphx::verify_range(results_vector, s));
} }
TEST_CASE(logsoftmax_test_axis_4)
{
migraphx::program p;
std::vector<float> a = {
1.93885877, -1.20006269, 0.90960855, 0.42108916, -1.50797544, -1.31047913, 1.07816336,
-1.13288733, -0.86411064, 0.97800238, 0.76631385, 2.07962834, -0.8940665, -1.62855592,
-0.53763057, -1.48165117, -0.64154112, 0.42486547, 0.89330917, -2.42022666, 0.192611,
-0.01257413, -1.5326607, 0.53137897, -1.52383859, 0.46994381, 0.00453619, 0.0066996,
1.58394908, 0.84216752, -0.04137941, -0.88580789, 1.44055158, -0.17621241, -1.98917923,
-0.08610038, 0.79020567, -0.67714548, 0.42774631, 0.1376574, 2.23569227, 1.16681234,
-1.21191456, -0.28411502, -0.18688975, 1.67552548, 2.48357974, 0.95891282, -0.06616535,
-0.99628491, 1.04314606, -1.22943315, 0.76930403, 0.31106618};
std::vector<float> s = {0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000,
0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000,
0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000,
0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000,
0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000,
0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000,
0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000,
0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000,
0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000};
migraphx::shape a_shape{migraphx::shape::float_type, {2, 3, 3, 3}};
auto al = p.add_literal(migraphx::literal{a_shape, a});
int axis = 4;
p.add_instruction(migraphx::op::logsoftmax{axis}, al);
p.compile(migraphx::cpu::target{});
auto result = p.eval({});
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(results_vector, s));
}
TEST_CASE(conv2d_test) TEST_CASE(conv2d_test)
{ {
migraphx::program p; migraphx::program p;
......
...@@ -569,13 +569,13 @@ struct test_sub2 : verify_program<test_sub2> ...@@ -569,13 +569,13 @@ struct test_sub2 : verify_program<test_sub2>
} }
}; };
struct test_softmax : verify_program<test_softmax> struct test_softmax1 : verify_program<test_softmax1>
{ {
migraphx::program create_program() const migraphx::program create_program() const
{ {
migraphx::program p; migraphx::program p;
auto x = p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {5, 3, 4, 2}}); auto x = p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {5, 3, 3, 4}});
p.add_instruction(migraphx::op::softmax{}, x); p.add_instruction(migraphx::op::softmax{0}, x);
return p; return p;
} }
}; };
...@@ -592,6 +592,25 @@ struct test_softmax2 : verify_program<test_softmax2> ...@@ -592,6 +592,25 @@ struct test_softmax2 : verify_program<test_softmax2>
} }
}; };
template <int Axis>
struct test_softmax : verify_program<test_softmax<Axis>>
{
migraphx::program create_program() const
{
migraphx::program p;
migraphx::shape s{migraphx::shape::float_type, {3, 4, 5, 6}};
auto param = p.add_parameter("0", s);
p.add_instruction(migraphx::op::softmax{Axis}, param);
return p;
}
};
template struct test_softmax<0>;
template struct test_softmax<1>;
template struct test_softmax<2>;
template struct test_softmax<3>;
struct test_conv : verify_program<test_conv> struct test_conv : verify_program<test_conv>
{ {
migraphx::program create_program() const migraphx::program create_program() const
...@@ -3326,7 +3345,6 @@ template struct test_logsoftmax<0>; ...@@ -3326,7 +3345,6 @@ template struct test_logsoftmax<0>;
template struct test_logsoftmax<1>; template struct test_logsoftmax<1>;
template struct test_logsoftmax<2>; template struct test_logsoftmax<2>;
template struct test_logsoftmax<3>; template struct test_logsoftmax<3>;
template struct test_logsoftmax<4>;
template <int Axis> template <int Axis>
struct test_logsoftmax_1 : verify_program<test_logsoftmax_1<Axis>> struct test_logsoftmax_1 : verify_program<test_logsoftmax_1<Axis>>
...@@ -3343,7 +3361,6 @@ struct test_logsoftmax_1 : verify_program<test_logsoftmax_1<Axis>> ...@@ -3343,7 +3361,6 @@ struct test_logsoftmax_1 : verify_program<test_logsoftmax_1<Axis>>
}; };
template struct test_logsoftmax_1<0>; template struct test_logsoftmax_1<0>;
template struct test_logsoftmax_1<1>;
struct test_fp32_fp16_lall : verify_program<test_fp32_fp16_lall> struct test_fp32_fp16_lall : verify_program<test_fp32_fp16_lall>
{ {
......
...@@ -346,60 +346,39 @@ TEST_CASE(gather) ...@@ -346,60 +346,39 @@ TEST_CASE(gather)
} }
} }
TEST_CASE(logsoftmax) template <class T>
void test_softmax_variations()
{ {
{ {
migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}}; migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}};
int axis = 0; expect_shape(migraphx::shape{migraphx::shape::float_type, {2, 3, 4, 5}}, T{0}, input);
expect_shape(migraphx::shape{migraphx::shape::float_type, {2, 3, 4, 5}},
migraphx::op::logsoftmax{axis},
input);
} }
{ {
migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}}; migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}};
int axis = 1; expect_shape(migraphx::shape{migraphx::shape::float_type, {2, 3, 4, 5}}, T{1}, input);
expect_shape(migraphx::shape{migraphx::shape::float_type, {2, 3, 4, 5}},
migraphx::op::logsoftmax{axis},
input);
} }
{ {
migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}}; migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}};
int axis = 2; expect_shape(migraphx::shape{migraphx::shape::float_type, {2, 3, 4, 5}}, T{2}, input);
expect_shape(migraphx::shape{migraphx::shape::float_type, {2, 3, 4, 5}},
migraphx::op::logsoftmax{axis},
input);
} }
{ {
migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}}; migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}};
int axis = 3; expect_shape(migraphx::shape{migraphx::shape::float_type, {2, 3, 4, 5}}, T{3}, input);
expect_shape(migraphx::shape{migraphx::shape::float_type, {2, 3, 4, 5}},
migraphx::op::logsoftmax{axis},
input);
} }
{ {
migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}}; migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}};
int axis = 4; int axis = 4;
expect_shape(migraphx::shape{migraphx::shape::float_type, {2, 3, 4, 5}}, throws_shape(T{axis}, input);
migraphx::op::logsoftmax{axis},
input);
} }
}
{ TEST_CASE(softmax) { test_softmax_variations<migraphx::op::softmax>(); }
migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}};
int axis = 5;
throws_shape(migraphx::op::logsoftmax{axis}, input);
}
{ TEST_CASE(logsoftmax) { test_softmax_variations<migraphx::op::logsoftmax>(); }
migraphx::shape input{migraphx::shape::float_type, {2, 3, 4, 5}};
int axis = -1;
throws_shape(migraphx::op::logsoftmax{axis}, input);
}
}
// 2 inputs arguments // 2 inputs arguments
TEST_CASE(matmul) TEST_CASE(matmul)
......
...@@ -109,6 +109,7 @@ TEST_CASE(conv_test) ...@@ -109,6 +109,7 @@ TEST_CASE(conv_test)
migraphx::op::convolution op; migraphx::op::convolution op;
op.padding_mode = migraphx::op::padding_mode_t::same; op.padding_mode = migraphx::op::padding_mode_t::same;
op.padding = {1, 1};
op.stride = {1, 1}; op.stride = {1, 1};
op.dilation = {1, 1}; op.dilation = {1, 1};
auto l2 = p.add_instruction(migraphx::op::transpose{{0, 3, 1, 2}}, l1); auto l2 = p.add_instruction(migraphx::op::transpose{{0, 3, 1, 2}}, l1);
...@@ -131,6 +132,7 @@ TEST_CASE(depthwiseconv_test) ...@@ -131,6 +132,7 @@ TEST_CASE(depthwiseconv_test)
migraphx::op::convolution op; migraphx::op::convolution op;
op.padding_mode = migraphx::op::padding_mode_t::same; op.padding_mode = migraphx::op::padding_mode_t::same;
op.padding = {1, 1};
op.stride = {1, 1}; op.stride = {1, 1};
op.dilation = {1, 1}; op.dilation = {1, 1};
op.group = 3; op.group = 3;
...@@ -178,9 +180,9 @@ TEST_CASE(mean_test) ...@@ -178,9 +180,9 @@ TEST_CASE(mean_test)
p.add_literal(l); p.add_literal(l);
migraphx::op::pooling op; migraphx::op::pooling op;
op.lengths = {16, 16}; op.lengths = {16, 16};
p.add_instruction(op, l0);
auto l3 = p.add_instruction(op, l0); auto l3 = p.add_instruction(op, l0);
p.add_instruction(migraphx::op::squeeze{{2, 3}}, l3); p.add_instruction(migraphx::op::squeeze{{2, 3}}, l3);
p.add_instruction(op, l0);
auto prog = migraphx::parse_tf("mean_test.pb", false); auto prog = migraphx::parse_tf("mean_test.pb", false);
EXPECT(p == prog); EXPECT(p == prog);
...@@ -195,9 +197,9 @@ TEST_CASE(mean_test_nhwc) ...@@ -195,9 +197,9 @@ TEST_CASE(mean_test_nhwc)
p.add_literal(l); p.add_literal(l);
migraphx::op::pooling op; migraphx::op::pooling op;
op.lengths = {16, 16}; op.lengths = {16, 16};
p.add_instruction(op, l0);
auto l3 = p.add_instruction(op, l0); auto l3 = p.add_instruction(op, l0);
p.add_instruction(migraphx::op::squeeze{{2, 3}}, l3); p.add_instruction(migraphx::op::squeeze{{2, 3}}, l3);
p.add_instruction(op, l0);
auto prog = migraphx::parse_tf("mean_test_nhwc.pb", true); auto prog = migraphx::parse_tf("mean_test_nhwc.pb", true);
EXPECT(p == prog); EXPECT(p == prog);
...@@ -271,8 +273,8 @@ TEST_CASE(pooling_test) ...@@ -271,8 +273,8 @@ TEST_CASE(pooling_test)
max_pool_op.stride = {2, 2}; max_pool_op.stride = {2, 2};
avg_pool_op.lengths = {2, 2}; avg_pool_op.lengths = {2, 2};
max_pool_op.lengths = {2, 2}; max_pool_op.lengths = {2, 2};
p.add_instruction(max_pool_op, l0);
p.add_instruction(avg_pool_op, l0); p.add_instruction(avg_pool_op, l0);
p.add_instruction(max_pool_op, l0);
auto prog = migraphx::parse_tf("pooling_test.pb", true); auto prog = migraphx::parse_tf("pooling_test.pb", true);
EXPECT(p == prog); EXPECT(p == prog);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment