Commit 0df035a0 authored by Aditya Atluri's avatar Aditya Atluri
Browse files

formatted source for previous commit

parent c8b86e03
......@@ -56,16 +56,23 @@ struct cpu_batch_norm_inference
auto image_height = output_shape.lens()[2];
auto image_width = output_shape.lens()[3];
visit_all(output, input, mini_batch_mean, mini_batch_variance, gamma, bias)([&](auto result, auto buffer, auto _mean, auto _variance, auto _gamma, auto _bias) {
for(size_t n = 0; n < num_batch; n++) {
visit_all(output, input, mini_batch_mean, mini_batch_variance, gamma, bias)(
[&](auto result, auto buffer, auto _mean, auto _variance, auto _gamma, auto _bias) {
for(size_t n = 0; n < num_batch; n++)
{
size_t stride_n = n * num_channels * image_height * image_width;
for(size_t c = 0; c < num_channels; c++) {
for(size_t c = 0; c < num_channels; c++)
{
size_t stride_c = c * image_height * image_width;
for(size_t h = 0; h < image_height; h++) {
for(size_t h = 0; h < image_height; h++)
{
size_t stride_h = h * image_width;
for(size_t w = 0; w < image_width; w++) {
for(size_t w = 0; w < image_width; w++)
{
size_t index = w + stride_h + stride_c + stride_n;
result[index] = _gamma[c] * (buffer[index] - _mean[c]) / std::sqrt(_variance[c] + epsilon) + _bias[c];
result[index] = _gamma[c] * (buffer[index] - _mean[c]) /
std::sqrt(_variance[c] + epsilon) +
_bias[c];
}
}
}
......
......@@ -10,7 +10,8 @@ void batch_norm_inference_test()
{
migraph::program p;
const size_t width = 2, height = 2, channels = 4, batches = 2;
const float x_val = 8.0f, mean_val = 2.0f, variance_val = 4.0f, scale_val = 2.0f, bias_val = 1.0f;
const float x_val = 8.0f, mean_val = 2.0f, variance_val = 4.0f, scale_val = 2.0f,
bias_val = 1.0f;
const float output_val = scale_val * (x_val - mean_val) / (std::sqrt(variance_val)) + bias_val;
migraph::shape s{migraph::shape::float_type, {batches, channels, height, width}};
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment