Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
0987f145
Commit
0987f145
authored
Nov 27, 2018
by
Paul
Browse files
Merge branch 'master' into migraphx
parents
2672f03f
12617aea
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
69 additions
and
14 deletions
+69
-14
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+15
-9
src/onnx/onnx.cpp
src/onnx/onnx.cpp
+54
-5
No files found.
src/include/migraphx/operators.hpp
View file @
0987f145
...
...
@@ -285,6 +285,12 @@ struct transpose
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
/// The contiguous operator takes a non-standard input tensor and returns
/// the same tensor but in standard form. For example, if input tensor A which has lens = (4,5)
/// is first transposed, i.e. lens = (5,4), this tensor's data layout remained the same
/// during the transpose operation; only it's shape lengths and strides were changed.
/// This leaves the tensor in a non-standard form. The contiguous operator copies the
/// underlying data such that resulting tensor is returned to a standard form.
struct
contiguous
{
std
::
string
name
()
const
{
return
"contiguous"
;
}
...
...
@@ -400,15 +406,6 @@ struct slice
auto
t
=
input_shape
.
type
();
const
auto
&
old_lens
=
input_shape
.
lens
();
const
auto
&
old_strides
=
input_shape
.
strides
();
// std::vector<int64_t> t_axes(old_lens.size());
// if(axes.size() == 0)
// {
// std::iota(t_axes.begin(), t_axes.end(), 0);
// }
// else
// {
// std::copy(axes.begin(), axes.end(), t_axes.begin());
// }
if
(
starts
.
size
()
!=
axes
.
size
()
||
axes
.
size
()
!=
ends
.
size
())
{
MIGRAPHX_THROW
(
"inconsistent sizes"
);
...
...
@@ -718,6 +715,15 @@ struct flatten
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
/// The broadcast operator performs the numpy-style broadcasting of an axis of a given tensor. This
/// is achieved primarily by setting the stride of the broadcasted axis to zero. Linear indicies are
/// computed from multi-indicies by computing the inner product on the multi-index with the strides.
/// For example, if we have a tensor A(2,3) it has lengths of (2,3) and strides of (3,1). If we want
/// to compute the linear offset that corresponds to the element on the 2nd row (i = 1) and 3rd
/// column (j = 2), we compute the following inner product (1,2) dot (3, 1) = 1*3 + 2*1 = 5. It is
/// obvious from there that we can negate the effects of a given axis by setting the stride of that
/// axis to zero.
struct
broadcast
{
uint64_t
axis
=
0
;
...
...
src/onnx/onnx.cpp
View file @
0987f145
...
...
@@ -44,6 +44,7 @@ struct onnx_parser
node_map
nodes
;
std
::
unordered_map
<
std
::
string
,
instruction_ref
>
instructions
;
program
prog
=
program
();
bool
is_pytorch
=
false
;
std
::
unordered_map
<
std
::
string
,
op_func
>
ops
;
...
...
@@ -138,7 +139,7 @@ struct onnx_parser
std
::
swap
(
s0
,
s1
);
// Copy the larger vector to output_lens
std
::
vector
<
std
::
size_t
>
output_lens
(
s1
->
size
())
;
std
::
vector
<
std
::
size_t
>
output_lens
=
*
s1
;
auto
offset
=
s1
->
size
()
-
s0
->
size
();
std
::
transform
(
s0
->
begin
(),
s0
->
end
(),
...
...
@@ -181,7 +182,22 @@ struct onnx_parser
op
::
convolution
op
;
if
(
contains
(
attributes
,
"pads"
))
{
copy
(
attributes
[
"pads"
].
ints
(),
op
.
padding
.
begin
());
if
(
contains
(
attributes
,
"auto_pad"
))
{
MIGRAPH_THROW
(
"auto_pad and padding cannot be specified simultaneously"
);
}
std
::
vector
<
std
::
size_t
>
padding
(
4
);
copy
(
attributes
[
"pads"
].
ints
(),
padding
.
begin
());
if
(
padding
.
size
()
!=
4
)
{
MIGRAPH_THROW
(
"padding should have 4 values"
);
}
if
(
padding
[
0
]
!=
padding
[
2
]
||
padding
[
1
]
!=
padding
[
3
])
{
MIGRAPH_THROW
(
"migraphx does not support asymetric padding"
);
}
op
.
padding
[
0
]
=
padding
[
0
];
op
.
padding
[
1
]
=
padding
[
1
];
}
if
(
contains
(
attributes
,
"strides"
))
{
...
...
@@ -191,6 +207,19 @@ struct onnx_parser
{
copy
(
attributes
[
"dilations"
].
ints
(),
op
.
dilation
.
begin
());
}
if
(
contains
(
attributes
,
"auto_pad"
))
{
auto
s
=
attributes
[
"auto_pad"
].
s
();
if
(
contains
(
attributes
,
"pads"
)
and
to_upper
(
s
)
!=
"NOTSET"
)
{
MIGRAPH_THROW
(
"auto_pad and padding cannot be specified simultaneously"
);
}
if
(
s
.
find
(
"SAME"
)
!=
std
::
string
::
npos
)
{
op
.
padding_mode
=
op
::
convolution
::
same
;
}
}
if
(
args
.
size
()
==
3
)
{
uint64_t
axis
=
1
;
...
...
@@ -213,7 +242,18 @@ struct onnx_parser
}
if
(
contains
(
attributes
,
"pads"
))
{
copy
(
attributes
[
"pads"
].
ints
(),
op
.
padding
.
begin
());
std
::
vector
<
std
::
size_t
>
padding
(
4
);
copy
(
attributes
[
"pads"
].
ints
(),
padding
.
begin
());
if
(
padding
.
size
()
!=
4
)
{
MIGRAPH_THROW
(
"padding should have 4 values"
);
}
if
(
padding
[
0
]
!=
padding
[
2
]
||
padding
[
1
]
!=
padding
[
3
])
{
MIGRAPH_THROW
(
"migraphx does not support asymetric padding"
);
}
op
.
padding
[
0
]
=
padding
[
0
];
op
.
padding
[
1
]
=
padding
[
1
];
}
if
(
contains
(
attributes
,
"strides"
))
{
...
...
@@ -223,6 +263,15 @@ struct onnx_parser
{
copy
(
attributes
[
"kernel_shape"
].
ints
(),
op
.
lengths
.
begin
());
}
if
(
contains
(
attributes
,
"auto_pad"
))
{
auto
s
=
attributes
[
"auto_pad"
].
s
();
if
(
to_upper
(
s
)
!=
"NOTSET"
)
{
MIGRAPH_THROW
(
"auto_pad is not supported for pooling"
);
}
}
return
prog
.
add_instruction
(
op
,
std
::
move
(
args
));
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment