Commit 087c205e authored by Paul's avatar Paul
Browse files

Merge from develop

parents a3a9e469 e15b8333
#ifndef MIGRAPHX_GUARD_RTGLIB_UNARY_HPP
#define MIGRAPHX_GUARD_RTGLIB_UNARY_HPP
#include <migraphx/gpu/hip.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/type_name.hpp>
#include <utility>
#include <iostream>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
template <class Derived>
struct oper
{
std::string name() const
{
const std::string& name = get_type_name<Derived>();
// search the namespace gpu (::gpu::)
auto pos_ns = name.find("::gpu::");
if(pos_ns != std::string::npos)
{
auto pos_name = name.find("hip_", pos_ns + std::string("::gpu::").length());
if(pos_name != std::string::npos)
{
return std::string("gpu::") + name.substr(pos_name + 4);
}
else
{
return name.substr(pos_ns + 2);
}
}
return "unknown";
}
};
template <class Derived, void (*F)(hipStream_t, const argument&, const argument&)>
struct unary_device : oper<Derived>
{
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(2);
return inputs.at(0);
}
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
F(ctx.get_stream().get(), args[1], args[0]);
return args[1];
}
int output_alias(const std::vector<shape>& shapes) const { return shapes.size() - 1; }
};
template <class Derived, void (*F)(hipStream_t, const argument&, const argument&, const argument&)>
struct binary_device : oper<Derived>
{
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(3);
return inputs.at(0);
}
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
F(ctx.get_stream().get(), args[2], args[1], args[0]);
return args[2];
}
int output_alias(const std::vector<shape>& shapes) const { return shapes.size() - 1; }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_PAD_HPP
#define MIGRAPHX_GUARD_RTGLIB_PAD_HPP
#include <migraphx/shape.hpp>
#include <migraphx/operators.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct hip_pad
{
op::pad op;
std::string name() const { return "gpu::pad"; }
shape compute_shape(std::vector<shape> inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
int output_alias(const std::vector<shape>& shapes) const { return shapes.size() - 1; }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_POOLING_HPP
#define MIGRAPHX_GUARD_RTGLIB_POOLING_HPP
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/contiguous.hpp>
#include <migraphx/gpu/device/add.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/context.hpp>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct miopen_pooling
{
op::pooling op;
......
#ifndef MIGRAPHX_GUARD_RTGLIB_RELU_HPP
#define MIGRAPHX_GUARD_RTGLIB_RELU_HPP
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/contiguous.hpp>
#include <migraphx/gpu/device/add.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/context.hpp>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct miopen_relu
{
shared<activation_descriptor> ad;
......
......@@ -2,7 +2,6 @@
#define MIGRAPHX_GUARD_MIGRAPHLIB_ROCBLAS_HPP
#include <migraphx/manage_ptr.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/config.hpp>
#include <rocblas.h>
......
#ifndef MIGRAPHX_GUARD_RTGLIB_SIGMOID_HPP
#define MIGRAPHX_GUARD_RTGLIB_SIGMOID_HPP
#include <migraphx/shape.hpp>
#include <migraphx/gpu/miopen.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct miopen_sigmoid
{
shared<activation_descriptor> ad;
std::string name() const { return "gpu::sigmoid"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
int output_alias(const std::vector<shape>& shapes) const { return shapes.size() - 1; }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_SIN_HPP
#define MIGRAPHX_GUARD_RTGLIB_SIN_HPP
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/contiguous.hpp>
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/sin.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/config.hpp>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct hip_sin
struct hip_sin : unary_device<hip_sin, device::sin>
{
std::string name() const { return "gpu::sin"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument compute(context&, const shape&, const std::vector<argument>& args) const;
int output_alias(const std::vector<shape>& shapes) const { return shapes.size() - 1; }
};
} // namespace gpu
......
#ifndef MIGRAPHX_GUARD_RTGLIB_SINH_HPP
#define MIGRAPHX_GUARD_RTGLIB_SINH_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/sinh.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct hip_sinh : unary_device<hip_sinh, device::sinh>
{
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP
#define MIGRAPHX_GUARD_RTGLIB_SOFTMAX_HPP
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/contiguous.hpp>
#include <migraphx/gpu/device/add.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/context.hpp>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct miopen_softmax
{
op::softmax op;
......
#ifndef MIGRAPHX_GUARD_RTGLIB_SUB_HPP
#define MIGRAPHX_GUARD_RTGLIB_SUB_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/sub.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct hip_sub : binary_device<hip_sub, device::sub>
{
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_TAN_HPP
#define MIGRAPHX_GUARD_RTGLIB_TAN_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/tan.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct hip_tan : unary_device<hip_tan, device::tan>
{
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_TANH_HPP
#define MIGRAPHX_GUARD_RTGLIB_TANH_HPP
#include <migraphx/shape.hpp>
#include <migraphx/gpu/miopen.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct miopen_tanh
{
shared<activation_descriptor> ad;
std::string name() const { return "gpu::tanh"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
int output_alias(const std::vector<shape>& shapes) const { return shapes.size() - 1; }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#include <migraphx/gpu/leaky_relu.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <utility>
#include <migraphx/gpu/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -18,7 +15,8 @@ argument miopen_leaky_relu::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
float alpha = 1, beta = 0;
float alpha = 1;
float beta = 0;
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
miopenActivationForward(ctx.get_stream().get_miopen(),
......
......@@ -16,16 +16,37 @@
#include <migraphx/gpu/convolution.hpp>
#include <migraphx/gpu/contiguous.hpp>
#include <migraphx/gpu/relu.hpp>
#include <migraphx/gpu/sigmoid.hpp>
#include <migraphx/gpu/abs.hpp>
#include <migraphx/gpu/leaky_relu.hpp>
#include <migraphx/gpu/elu.hpp>
#include <migraphx/gpu/softmax.hpp>
#include <migraphx/gpu/add.hpp>
#include <migraphx/gpu/sub.hpp>
#include <migraphx/gpu/exp.hpp>
#include <migraphx/gpu/log.hpp>
#include <migraphx/gpu/sin.hpp>
#include <migraphx/gpu/cos.hpp>
#include <migraphx/gpu/tan.hpp>
#include <migraphx/gpu/sinh.hpp>
#include <migraphx/gpu/cosh.hpp>
#include <migraphx/gpu/tanh.hpp>
#include <migraphx/gpu/asin.hpp>
#include <migraphx/gpu/acos.hpp>
#include <migraphx/gpu/atan.hpp>
#include <migraphx/gpu/mul.hpp>
#include <migraphx/gpu/max.hpp>
#include <migraphx/gpu/min.hpp>
#include <migraphx/gpu/batchnorm.hpp>
#include <migraphx/gpu/pooling.hpp>
#include <migraphx/gpu/gemm.hpp>
#include <migraphx/gpu/concat.hpp>
#include <migraphx/gpu/pad.hpp>
#include <migraphx/gpu/gather.hpp>
#include <migraphx/gpu/lrn.hpp>
#include <utility>
#include <functional>
#include <algorithm>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -35,6 +56,8 @@ struct miopen_apply
{
program* prog = nullptr;
context ctx{};
std::unordered_map<std::string, std::function<instruction_ref(instruction_ref)>> apply_map{};
instruction_ref last{};
void check_shape(shape x, instruction_ref i)
{
......@@ -43,190 +66,180 @@ struct miopen_apply
(void)i;
}
void init()
{
this->last = instruction::get_output_alias(std::prev(prog->end()));
add_miopen_simple_op<miopen_relu>("relu", make_relu);
add_miopen_simple_op<miopen_sigmoid>("sigmoid", make_sigmoid);
add_miopen_simple_op<miopen_abs>("abs", make_abs);
add_miopen_simple_op<miopen_tanh>("tanh", make_tanh);
add_miopen_extend_op<miopen_leaky_relu, op::leaky_relu>("leaky_relu", make_leaky_relu);
add_miopen_extend_op<miopen_elu, op::elu>("elu", make_elu);
add_generic_op<hip_add>("add");
add_generic_op<hip_sub>("sub");
add_generic_op<hip_exp>("exp");
add_generic_op<hip_log>("log");
add_generic_op<hip_sin>("sin");
add_generic_op<hip_cos>("cos");
add_generic_op<hip_tan>("tan");
add_generic_op<hip_sinh>("sinh");
add_generic_op<hip_cosh>("cosh");
add_generic_op<hip_asin>("asin");
add_generic_op<hip_acos>("acos");
add_generic_op<hip_atan>("atan");
add_generic_op<hip_mul>("mul");
add_generic_op<hip_max>("max");
add_generic_op<hip_min>("min");
add_extend_op<miopen_gemm, op::dot>("dot");
add_extend_op<miopen_contiguous, op::contiguous>("contiguous");
add_extend_op<hip_concat, op::concat>("concat");
add_extend_op<miopen_softmax, op::softmax>("softmax");
add_extend_op<hip_gather, op::gather>("gather");
add_extend_op<hip_pad, op::pad>("pad");
add_lrn_op();
add_convolution_op();
add_pooling_op();
add_batch_norm_inference_op();
}
void apply()
{
init();
for(auto it = prog->begin(); it != prog->end(); it++)
{
auto s = it->get_shape();
if(it->name() == "convolution")
{
check_shape(s, apply_convolution(it));
}
else if(it->name() == "relu")
{
check_shape(s, apply_relu(it));
}
else if(it->name() == "leaky_relu")
{
check_shape(s, apply_leaky_relu(it));
}
else if(it->name() == "pooling")
{
check_shape(s, apply_pooling(it));
}
else if(it->name() == "add")
{
check_shape(s, apply_add(it));
}
else if(it->name() == "sin")
{
check_shape(s, apply_sin(it));
}
else if(it->name() == "mul")
{
check_shape(s, apply_mul(it));
}
else if(it->name() == "dot")
{
check_shape(s, apply_gemm(it));
}
else if(it->name() == "contiguous")
if(apply_map.count(it->name()) > 0)
{
check_shape(s, apply_contiguous(it));
}
else if(it->name() == "concat")
{
check_shape(s, apply_concat(it));
}
else if(it->name() == "batch_norm_inference")
{
check_shape(s, apply_batch_norm_inference(it));
}
else if(it->name() == "softmax")
{
check_shape(s, apply_softmax(it));
check_shape(s, apply_map.at(it->name())(it));
}
}
}
instruction_ref insert_allocation(instruction_ref ins, const shape& s, std::string tag = "")
{
if(ins == --prog->end() and tag.empty())
if(ins == last and tag.empty())
{
return prog->add_parameter("output", s);
}
else
{
auto is = prog->add_outline(s);
auto result = prog->insert_instruction(ins, hip_allocate{std::move(tag)}, is);
auto result = prog->insert_instruction(ins, hip_allocate{s, std::move(tag)});
return result;
}
}
instruction_ref apply_convolution(instruction_ref ins)
void add_convolution_op()
{
auto&& op = any_cast<op::convolution>(ins->get_operator());
apply_map.emplace("convolution", [=](instruction_ref ins) {
auto&& op = any_cast<op::convolution>(ins->get_operator());
auto conv = miopen_convolution{op, make_conv(op)};
auto ws = conv.compile(ctx, ins->get_shape(), ins->inputs());
auto conv = miopen_convolution{op, make_conv(op)};
auto ws = conv.compile(ctx, ins->get_shape(), to_shapes(ins->inputs()));
auto workspace = insert_allocation(ins, ws, "workspace");
auto output = insert_allocation(ins, ins->get_shape());
auto workspace = insert_allocation(ins, ws, "workspace");
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(
ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
return prog->replace_instruction(
ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
});
}
instruction_ref apply_pooling(instruction_ref ins)
void add_pooling_op()
{
auto&& op = any_cast<op::pooling>(ins->get_operator());
auto pd = make_pooling(op);
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(
ins, miopen_pooling{op, std::move(pd)}, ins->inputs().at(0), output);
apply_map.emplace("pooling", [=](instruction_ref ins) {
auto&& op = any_cast<op::pooling>(ins->get_operator());
auto pd = make_pooling(op);
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(
ins, miopen_pooling{op, std::move(pd)}, ins->inputs().at(0), output);
});
}
instruction_ref apply_relu(instruction_ref ins)
void add_lrn_op()
{
auto ad = make_relu();
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(
ins, miopen_relu{std::move(ad)}, ins->inputs().at(0), output);
apply_map.emplace("lrn", [=](instruction_ref ins) {
auto&& op = any_cast<op::lrn>(ins->get_operator());
auto ldesc = make_lrn(op);
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(
ins, miopen_lrn{std::move(ldesc)}, ins->inputs().at(0), output);
});
}
instruction_ref apply_leaky_relu(instruction_ref ins)
template <class T>
void add_generic_op(std::string name)
{
auto&& op = any_cast<op::leaky_relu>(ins->get_operator());
auto ad = make_leaky_relu(op.alpha);
apply_map.emplace(name, [=](instruction_ref ins) {
auto output = insert_allocation(ins, ins->get_shape());
std::vector<instruction_ref> refs = ins->inputs();
refs.push_back(output);
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(
ins, miopen_leaky_relu{std::move(ad)}, ins->inputs().at(0), output);
return prog->replace_instruction(ins, T{}, refs);
});
}
instruction_ref apply_softmax(instruction_ref ins)
template <class T, class Op>
void add_extend_op(std::string name)
{
auto&& op = any_cast<op::softmax>(ins->get_operator());
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(ins, miopen_softmax{op}, ins->inputs().at(0), output);
apply_map.emplace(name, [=](instruction_ref ins) {
auto&& op = any_cast<Op>(ins->get_operator());
auto output = insert_allocation(ins, ins->get_shape());
std::vector<instruction_ref> refs = ins->inputs();
refs.push_back(output);
return prog->replace_instruction(ins, T{op}, refs);
});
}
instruction_ref apply_add(instruction_ref ins)
template <class T, class Op, class F>
void add_miopen_extend_op(std::string name, F f)
{
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(
ins, hip_add{}, ins->inputs().at(0), ins->inputs().at(1), output);
}
apply_map.emplace(name, [=](instruction_ref ins) {
auto&& op = any_cast<Op>(ins->get_operator());
auto ad = f(op.alpha);
instruction_ref apply_sin(instruction_ref ins)
{
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(ins, hip_sin{}, ins->inputs().at(0), output);
}
instruction_ref apply_mul(instruction_ref ins)
{
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(
ins, hip_mul{}, ins->inputs().at(0), ins->inputs().at(1), output);
}
instruction_ref apply_gemm(instruction_ref ins)
{
auto&& op = any_cast<op::dot>(ins->get_operator());
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(
ins, miopen_gemm{op}, ins->inputs().at(0), ins->inputs().at(1), output);
}
instruction_ref apply_contiguous(instruction_ref ins)
{
auto&& op = any_cast<op::contiguous>(ins->get_operator());
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(ins, miopen_contiguous{op}, ins->inputs().at(0), output);
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(ins, T{std::move(ad)}, ins->inputs().at(0), output);
});
}
instruction_ref apply_concat(instruction_ref ins)
template <class T, class F>
void add_miopen_simple_op(std::string name, F f)
{
auto&& op = any_cast<op::concat>(ins->get_operator());
auto output = insert_allocation(ins, ins->get_shape());
std::vector<instruction_ref> refs = ins->inputs();
refs.push_back(output);
return prog->replace_instruction(ins, hip_concat{op}, refs);
apply_map.emplace(name, [=](instruction_ref ins) {
auto ad = f();
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(ins, T{std::move(ad)}, ins->inputs().at(0), output);
});
}
instruction_ref apply_batch_norm_inference(instruction_ref ins)
void add_batch_norm_inference_op()
{
auto&& op = any_cast<op::batch_norm_inference>(ins->get_operator());
auto output = insert_allocation(ins, ins->get_shape());
shape old_shape = ins->inputs().at(1)->get_shape();
std::vector<int64_t> new_shape{1, static_cast<int64_t>(old_shape.elements()), 1, 1};
auto reshape_op = op::reshape{new_shape};
std::vector<instruction_ref> reshapes;
std::transform(ins->inputs().begin() + 1,
ins->inputs().end(),
std::back_inserter(reshapes),
[&](auto i) { return prog->insert_instruction(ins, reshape_op, i); });
return prog->replace_instruction(ins,
miopen_batch_norm_inference{op},
ins->inputs().at(0),
reshapes[0],
reshapes[1],
reshapes[2],
reshapes[3],
output);
apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
auto&& op = any_cast<op::batch_norm_inference>(ins->get_operator());
auto output = insert_allocation(ins, ins->get_shape());
shape old_shape = ins->inputs().at(1)->get_shape();
std::vector<int64_t> new_shape{1, static_cast<int64_t>(old_shape.elements()), 1, 1};
auto reshape_op = op::reshape{new_shape};
std::vector<instruction_ref> reshapes;
std::transform(ins->inputs().begin() + 1,
ins->inputs().end(),
std::back_inserter(reshapes),
[&](auto i) { return prog->insert_instruction(ins, reshape_op, i); });
return prog->replace_instruction(ins,
miopen_batch_norm_inference{op},
ins->inputs().at(0),
reshapes[0],
reshapes[1],
reshapes[2],
reshapes[3],
output);
});
}
};
......
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/gpu/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_lrn::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(2).not_broadcasted();
return inputs.at(1);
}
argument miopen_lrn::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
float alpha = 1;
float beta = 0;
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
miopenLRNForward(ctx.get_stream().get_miopen(),
ldesc.get(),
&alpha,
x_desc.get(),
args[0].implicit(),
&beta,
y_desc.get(),
args[1].implicit(),
false,
nullptr);
return args[1];
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#include <migraphx/gpu/mul.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape hip_mul::compute_shape(const std::vector<shape>& inputs) const
{
// check_shapes{inputs, *this}.has(3).standard();
check_shapes{inputs, *this}.has(3);
return inputs.at(0);
}
argument hip_mul::compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
device::mul(ctx.get_stream().get(), args[2], args[0], args[1]);
return args[2];
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#include <migraphx/gpu/pad.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/device/pad.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape hip_pad::compute_shape(std::vector<shape> inputs) const
{
inputs.pop_back();
return op.compute_shape(inputs);
}
argument hip_pad::compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
return device::pad(ctx.get_stream().get(), args.back(), args.front(), op.value, op.pads);
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#include <migraphx/gpu/pooling.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <utility>
#include <migraphx/gpu/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -20,7 +17,8 @@ argument miopen_pooling::compute(context& ctx,
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
float alpha = 1, beta = 0;
float alpha = 1;
float beta = 0;
miopenPoolingForward(ctx.get_stream().get_miopen(),
pd.get(),
......
#include <migraphx/gpu/relu.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <utility>
#include <migraphx/gpu/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -18,7 +15,8 @@ argument miopen_relu::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
float alpha = 1, beta = 0;
float alpha = 1;
float beta = 0;
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
miopenActivationForward(ctx.get_stream().get_miopen(),
......
#include <migraphx/gpu/sigmoid.hpp>
#include <migraphx/gpu/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_sigmoid::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(2).not_broadcasted();
return inputs.at(1);
}
argument miopen_sigmoid::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
float alpha = 1;
float beta = 0;
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
miopenActivationForward(ctx.get_stream().get_miopen(),
ad.get(),
&alpha,
x_desc.get(),
args[0].implicit(),
&beta,
y_desc.get(),
args[1].implicit());
return args[1];
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment