from . common import HFTask class NaturalQs(HFTask): DATASET_PATH = "natural_questions" DATASET_NAME = None def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return False def fewshot_description(self): # TODO: figure out description return "" def training_docs(self): # Cache training for faster few-shot. # Data is too large to fit in memory. return self.data["train"] def doc_to_text(self, doc, include_target=True): question = doc['question']['text'] text = 'Q: ' + question + '\n\n' + 'A: ' if include_target: # There's a short answer and a long answer. Based on the paper, I'm using the long answer. short_answer = doc['annotations']['short_answers'][0]['text'] long_answer_start = doc['annotations']['long_answer'][0]['start_token'] long_answer_end = doc['annotations']['long_answer'][0]['end_token'] long_answer_span = doc['document']['tokens']['token'][long_answer_start:long_answer_end] long_answer_is_html = doc['document']['tokens']['is_html'][long_answer_start:long_answer_end] long_answer_chars = [tok for (tok, is_html) in zip(long_answer_span, long_answer_is_html) if not is_html] long_answer = " ".join(long_answer_chars) text += long_answer # Replace with short_answer[0] for short answer return text def evaluate(self, docs, lm, provide_description, num_fewshot): # TODO: implement raise NotImplementedError()