# MIT License # # Copyright (c) 2023 THU-KEG & Zhipu AI # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import re import string from collections import Counter try: import jieba from fuzzywuzzy import fuzz from rouge import Rouge except ImportError: raise ImportError( 'Please install the required dependencies for this task with `pip install lm_eval["longbench"] or `pip install jieba fuzzywuzzy rouge`' ) # taken from https://github.com/THUDM/LongBench def normalize_answer(s: str) -> str: """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def normalize_zh_answer(s: str) -> str: """Lower text and remove punctuation, extra whitespace.""" def white_space_fix(text): return "".join(text.split()) def remove_punc(text): cn_punctuation = "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏." all_punctuation = set(string.punctuation + cn_punctuation) return "".join(ch for ch in text if ch not in all_punctuation) def lower(text): return text.lower() return white_space_fix(remove_punc(lower(s))) def count_score(predictions: list[str], references: list[str], **kwargs) -> float: prediction, ground_truth = predictions[0], references[0] numbers = re.findall(r"\d+", prediction) right_num = 0 for number in numbers: if str(number) == str(ground_truth): right_num += 1 final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers) return float(final_score) def retrieval_score(predictions: list[str], references: list[str], **kwargs) -> float: prediction, ground_truth = predictions[0], references[0] pattern = r"Paragraph (\d+)" matches = re.findall(pattern, ground_truth) ground_truth_id = matches[0] numbers = re.findall(r"\d+", prediction) right_num = 0 for number in numbers: if str(number) == str(ground_truth_id): right_num += 1 final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers) return float(final_score) def retrieval_zh_score( predictions: list[str], references: list[str], **kwargs ) -> float: prediction, ground_truth = predictions[0], references[0] pattern = r"段落(\d+)" matches = re.findall(pattern, ground_truth) ground_truth_id = matches[0] numbers = re.findall(r"\d+", prediction) right_num = 0 for number in numbers: if str(number) == str(ground_truth_id): right_num += 1 final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers) return float(final_score) def code_sim_score(predictions: list[str], references: list[str], **kwargs) -> float: prediction, ground_truth = predictions[0], references[0] all_lines = prediction.lstrip("\n").split("\n") prediction = "" for line in all_lines: if ("`" not in line) and ("#" not in line) and ("//" not in line): prediction = line break return fuzz.ratio(prediction, ground_truth) / 100 def classification_score( predictions: list[str], references: list[str], **kwargs ) -> float: prediction, ground_truth = predictions[0], references[0] em_match_list = [] all_classes = kwargs["all_classes"] for class_name in all_classes: if class_name in prediction: em_match_list.append(class_name) for match_term in em_match_list: if match_term in ground_truth and match_term != ground_truth: em_match_list.remove(match_term) if ground_truth in em_match_list: score = 1.0 / len(em_match_list) else: score = 0.0 return score def rouge_score(predictions: list[str], references: list[str], **kwargs) -> float: prediction, ground_truth = predictions[0], references[0] rouge = Rouge() try: scores = rouge.get_scores([prediction], [ground_truth], avg=True) # ruff: noqa except: return 0.0 return scores["rouge-l"]["f"] def rouge_zh_score(predictions: list[str], references: list[str], **kwargs) -> float: prediction, ground_truth = predictions[0], references[0] prediction = " ".join(list(jieba.cut(prediction, cut_all=False))) ground_truth = " ".join(list(jieba.cut(ground_truth, cut_all=False))) score = rouge_score([prediction], [ground_truth]) return score def f1_score(predictions: list[str], references: list[str], **kwargs): try: prediction, ground_truth = predictions[0], references[0] except: return 0.0 common = Counter(prediction) & Counter(ground_truth) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction) recall = 1.0 * num_same / len(ground_truth) f1 = (2 * precision * recall) / (precision + recall) return f1 def qa_f1_score(predictions: list[str], references: list[str], **kwargs) -> float: prediction, ground_truth = predictions[0], references[0] normalized_prediction = normalize_answer(prediction) normalized_ground_truth = normalize_answer(ground_truth) prediction_tokens = normalized_prediction.split() ground_truth_tokens = normalized_ground_truth.split() try: res = f1_score(prediction_tokens, ground_truth_tokens) except: return 0.0 return res def qa_f1_zh_score(predictions: list[str], references: list[str], **kwargs) -> float: prediction, ground_truth = predictions[0], references[0] prediction_tokens = list(jieba.cut(prediction, cut_all=False)) ground_truth_tokens = list(jieba.cut(ground_truth, cut_all=False)) prediction_tokens = [normalize_zh_answer(token) for token in prediction_tokens] ground_truth_tokens = [normalize_zh_answer(token) for token in ground_truth_tokens] prediction_tokens = [token for token in prediction_tokens if len(token) > 0] ground_truth_tokens = [token for token in ground_truth_tokens if len(token) > 0] return f1_score(prediction_tokens, ground_truth_tokens)