import numpy as np import json from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef from tqdm import auto as tqdm_lib from . common import HFTask, simple_accuracy_metric, yesno from pathlib import Path from ..base import Dataset class DROP(Dataset): DATAFOLDER = Path(__file__).parent / "../../data/drop" def __init__(self): super().__init__() def has_training_docs(self): """Whether the task has a training set""" return True def has_validation_docs(self): """Whether the task has a validation set""" return True def has_test_docs(self): """Whether the task has a test set""" return False def training_docs(self): docs = json.load(open(self.DATAFOLDER / 'drop_dataset_train.json')) return [docs[k] for k in docs.keys()] def validation_docs(self): docs = json.load(open(self.DATAFOLDER / 'drop_dataset_dev.json')) return [docs[k] for k in docs.keys()] def test_docs(self): pass def doc_to_text(self, doc, include_target=True): doctext = "Passage: {}\n".format(doc["passage"]) qa_texts = [] for pair in doc["qa_pairs"]: text = ''.join(['Question: ', pair['question'],'\nAnswer: ']) if include_target: def get_answer(ans_dict): if ans_dict['number'] != '': return ans_dict['number'] if ans_dict['spans'] != []: if len(ans_dict['spans']) > 0: return ', '.join(ans_dict['spans']) return ans_dict['spans'][0] return ' '.join([ans_dict['date']['day'], ans_dict['date']['month'], ans_dict['date']['year']]).strip() text = ''.join([text, get_answer(pair['answer'])]) qa_texts.append(text) return ''.join([doctext, '\n'.join(qa_texts)]) def fewshot_description(self): # TODO: figure out description return "" def construct_requests(self, doc, ctx): """ Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def process_results(self, doc, results): """Take a single document and the LM results and evaluates, returning a dict where keys are the names of submetrics and values are the values of the metric for that one document :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param results: The results of the requests created in construct_requests. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def aggregation(self): """ :returns: {str: [float] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metrics """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented')