import numpy as np from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef from tqdm import auto as tqdm_lib from . common import HFTask, simple_accuracy_metric, yesno class SQuAD(HFTask): DATASET_PATH = "squad_v2" DATASET_NAME = None def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return False def training_docs(self): if self.has_training_docs(): return self.data["train"] def validation_docs(self): if self.has_validation_docs(): return self.data["validation"] def fewshot_description(self): # TODO: redo description return "Title: The_Title_of_It\n\nBackground: A text passage as background to answer the question with.\n\nQ: Question about the passage.\n\nA: Answer." def doc_to_text(self, doc): return 'Title: ' + doc['title'] + '\n\n' + 'Background: ' + doc['context'] + '\n\n' + 'Q: ' + doc['question'] + '\n\n' + 'A: ' def doc_to_target(self, doc): answer_list = doc['answers']['text'] if len(answer_list) > 0: answer = answer_list[0] else: answer = 'unanswerable' return answer def construct_requests(self, doc, ctx): """ Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def process_results(self, doc, results): """Take a single document and the LM results and evaluates, returning a dict where keys are the names of submetrics and values are the values of the metric for that one document :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param results: The results of the requests created in construct_requests. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def aggregation(self): """ :returns: {str: [float] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metrics """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented')