# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted. import json import random from lm_eval.base import Dataset from ..utils import sh class PiQA(Dataset): def __init__(self): self.download() def download(self): #pass #TODO: don't download if files already there sh(""" mkdir -p data/piqa wget https://yonatanbisk.com/piqa/data/train.jsonl -O data/piqa/piqa-train.jsonl wget https://yonatanbisk.com/piqa/data/train-labels.lst -O data/piqa/piqa-train-labels.lst wget https://yonatanbisk.com/piqa/data/valid.jsonl -O data/piqa/piqa-valid.jsonl wget https://yonatanbisk.com/piqa/data/valid-labels.lst -O data/piqa/piqa-valid-labels.lst wget https://yonatanbisk.com/piqa/data/tests.jsonl -O data/piqa/piqa-test.jsonl """) def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return True def load_docs(self, textfilename, labelfilename): if labelfilename != None: return zip([json.loads(entry) for entry in list(open(textfilename,'r'))],list(open(labelfilename, 'r'))) else: return [json.loads(entry) for entry in list(open(textfilename,'r'))] def training_docs(self): return self.load_docs('data/piqa/piqa-train.jsonl', 'data/piqa/piqa-train-labels.lst') def validation_docs(self): return self.load_docs('data/piqa/piqa-valid.jsonl', 'data/piqa/piqa-valid-labels.lst') def test_docs(self): return self.load_docs('data/piqa/piqa-test.jsonl', None) def fewshot_description(self): # TODO: figure out fewshot description return "" def doc_to_text(self, doc): #TODO: check if oa uses newline return doc['goal'] + ' ' def doc_to_target(self, doc): rightanswer = int(doc[1][0]) + 1 return ''.join([doc[0]['goal'],' ',doc[0]['sol'+str(rightanswer)]]) def construct_requests(self, doc, ctx): """ Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def process_results(self, doc, results): """Take a single document and the LM results and evaluates, returning a dict where keys are the names of submetrics and values are the values of the metric for that one document :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param results: The results of the requests created in construct_requests. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def aggregation(self): """ :returns: {str: [float] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metrics """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented')