# REMINDER: this code needs to be rewritten for the new framework. Remove this comment when the code is fully converted. import numpy as np import json from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef from tqdm import auto as tqdm_lib from . common import HFTask, simple_accuracy_metric, yesno from pathlib import Path from ..base import Dataset class DROP(Dataset): DATAFOLDER = Path(__file__).parent / "../../data/drop" def __init__(self): self.download() def has_training_docs(self): """Whether the task has a training set""" return True def has_validation_docs(self): """Whether the task has a validation set""" return True def has_test_docs(self): """Whether the task has a test set""" return False def training_docs(self): docs = json.load(open(self.DATAFOLDER / 'drop_dataset_train.json')) return [docs[k] for k in docs.keys()] def validation_docs(self): docs = json.load(open(self.DATAFOLDER / 'drop_dataset_dev.json')) return [docs[k] for k in docs.keys()] def test_docs(self): pass def doc_to_text(self, doc, include_target=True): doctext = "Passage: {}\n".format(doc["passage"]) qa_texts = [] for pair in doc["qa_pairs"]: text = ''.join(['Question: ', pair['question'],'\nAnswer: ']) if include_target: def get_answer(ans_dict): if ans_dict['number'] != '': return ans_dict['number'] if ans_dict['spans'] != []: if len(ans_dict['spans']) > 0: return ', '.join(ans_dict['spans']) return ans_dict['spans'][0] return ' '.join([ans_dict['date']['day'], ans_dict['date']['month'], ans_dict['date']['year']]).strip() text = ''.join([text, get_answer(pair['answer'])]) qa_texts.append(text) return ''.join([doctext, '\n'.join(qa_texts)]) def fewshot_description(self): # TODO: figure out description return "" def construct_requests(self, doc, ctx): """ Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def process_results(self, doc, results): """Take a single document and the LM results and evaluates, returning a dict where keys are the names of submetrics and values are the values of the metric for that one document :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param results: The results of the requests created in construct_requests. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def aggregation(self): """ :returns: {str: [float] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metrics """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented')