""" The LAMBADA dataset: Word prediction requiring a broad discourse context∗ https://arxiv.org/pdf/1606.06031.pdf LAMBADA is a dataset to evaluate the capabilities of computational models for text understanding by means of a word prediction task. LAMBADA is a collection of narrative passages sharing the characteristic that human subjects are able to guess their last word if they are exposed to the whole passage, but not if they only see the last sentence preceding the target word. To succeed on LAMBADA, computational models cannot simply rely on local context, but must be able to keep track of information in the broader discourse. Homepage: https://zenodo.org/record/2630551#.X4Xzn5NKjUI """ import inspect import lm_eval.datasets.lambada.lambada from lm_eval.base import Task, rf from lm_eval.metrics import mean, perplexity _CITATION = """ @misc{ author={Paperno, Denis and Kruszewski, Germán and Lazaridou, Angeliki and Pham, Quan Ngoc and Bernardi, Raffaella and Pezzelle, Sandro and Baroni, Marco and Boleda, Gemma and Fernández, Raquel}, title={The LAMBADA dataset}, DOI={10.5281/zenodo.2630551}, publisher={Zenodo}, year={2016}, month={Aug} } """ class LAMBADA(Task): VERSION = 0 DATASET_PATH = inspect.getfile(lm_eval.datasets.lambada.lambada) def has_training_docs(self): return False def has_validation_docs(self): return True def has_test_docs(self): return False def training_docs(self): pass def validation_docs(self): return self.dataset["validation"] def test_docs(self): pass def doc_to_text(self, doc): return doc['text'].rsplit(' ', 1)[0] def should_decontaminate(self): return True def doc_to_decontamination_query(self, doc): return doc['text'] def doc_to_target(self, doc): return " " + doc['text'].rsplit(' ', 1)[1] def construct_requests(self, doc, ctx): ll, is_greedy = rf.loglikelihood(ctx, self.doc_to_target(doc)) return ll, is_greedy def process_results(self, doc, results): ll, is_greedy = results return { 'ppl': ll, 'acc': int(is_greedy) } def aggregation(self): return { 'ppl': perplexity, 'acc': mean } def higher_is_better(self): return { 'ppl': False, 'acc': True }