import collections import itertools import random import lm_eval.metrics import lm_eval.models import lm_eval.tasks import lm_eval.base import numpy as np def simple_evaluate(model, model_args, task_names, num_fewshot=0, batch_size=None, device=None, no_cache=False, limit=None, bootstrap_iters=100000, description_dict=None): """Instantiate and evaluate a model on a list of tasks. :param model: str Name of model, see lm_eval.models.get_model :param model_args: str String arguments for each model class, see LM.create_from_arg_string :param task_names: list[str] List of task names :param num_fewshot: int Number of examples in few-shot context :param batch_size: int, optional Batch size for model :param device: str, optional PyTorch device (e.g. "cpu" or "cuda:0") for running models :param no_cache: bool Whether or not to cache :param limit: int, optional Limit the number of examples per task (only use this for testing) :param bootstrap_iters: Number of iterations for bootstrap statistics :param description_dict: dict[str, str] Dictionary of custom task descriptions of the form: `task_name: description` :return Dictionary of results """ random.seed(1234) np.random.seed(1234) lm = lm_eval.models.get_model(model).create_from_arg_string(model_args, { 'batch_size': batch_size, 'device': device }) if not no_cache: lm = lm_eval.base.CachingLM( lm, 'lm_cache/' + model + '_' + model_args.replace('=', '-').replace(',', '_').replace('/', '-') + '.db' ) task_dict = lm_eval.tasks.get_task_dict(task_names) results = evaluate(lm, task_dict, False, num_fewshot, limit, description_dict=description_dict) # add info about the model and few shot config results["config"] = { "model": model, "model_args": model_args, "num_fewshot": num_fewshot, "batch_size": batch_size, "device": device, "no_cache": no_cache, "limit": limit, "bootstrap_iters": bootstrap_iters, "description_dict": description_dict } return results def evaluate(lm, task_dict, provide_description, num_fewshot, limit, bootstrap_iters=100000, description_dict=None): """Instantiate and evaluate a model on a list of tasks. :param lm: obj Language Model :param task_dict: dict[str, Task] Dictionary of tasks :param provide_description: bool Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method :param num_fewshot: int Number of examples in few-shot context :param limit: int, optional Limit the number of examples per task (only use this for testing) :param bootstrap_iters: Number of iterations for bootstrap statistics :param description_dict: dict[str, str] Dictionary of custom task descriptions of the form: `task_name: description` :return Dictionary of results """ # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces # TODO: todo: implement proper description-providing system assert not provide_description # not implemented. task_dict_items = [ (name, task) for name, task in task_dict.items() if(task.has_validation_docs() or task.has_test_docs()) ] results = collections.defaultdict(dict) versions = collections.defaultdict(dict) requests = collections.defaultdict(list) requests_origin = collections.defaultdict(list) # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because # over-engineering is bad (or we could make it write the requests to disk and then read them back out again # - probably using an sqlite db because of all the moving parts we have # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable docs = {} # get lists of each type of request for task_name, task in task_dict_items: versions[task_name] = task.VERSION # default to test doc, fall back to val doc if validation unavailable # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point if task.has_test_docs(): task_doc_func = task.test_docs elif task.has_validation_docs(): task_doc_func = task.validation_docs else: raise RuntimeError("Task has neither test_docs nor validation_docs") # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order task_docs = list(task_doc_func()) rnd = random.Random() rnd.seed(42) rnd.shuffle(task_docs) description = description_dict[task_name] if description_dict and task_name in description_dict else "" for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)): docs[(task_name, doc_id)] = doc ctx = task.fewshot_context( doc=doc, num_fewshot=num_fewshot, provide_description=provide_description, rnd=rnd, description=description ) reqs = task.construct_requests(doc, ctx) if not isinstance(reqs, (list, tuple)): reqs = [reqs] for i, req in enumerate(reqs): requests[req.request_type].append(req) # i: index in requests for a single task instance # doc_id: unique id that we can get back to a doc using `docs` requests_origin[req.request_type].append((i, task_name, doc, doc_id)) # all responses for each (task, doc) process_res_queue = collections.defaultdict(list) # execute each type of request for reqtype, reqs in requests.items(): # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing # only in index. We could implement some kind of caching, but that would be more of a band-aid # solution. we could also implement some kind of auto-grouping here; # they should end up next to each other. print("Running", reqtype, "requests") resps = getattr(lm, reqtype)([req.args for req in reqs]) resps = [x if req.index is None else x[req.index] for x, req in zip(resps, reqs)] for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]): process_res_queue[(task_name, doc_id)].append((i, resp)) vals = collections.defaultdict(list) # unpack results and sort back in order and return control to Task for (task_name, doc_id), requests in process_res_queue.items(): requests.sort(key=lambda x: x[0]) requests = [x[1] for x in requests] task = task_dict[task_name] doc = docs[(task_name, doc_id)] metrics = task.process_results(doc, requests) for metric, value in metrics.items(): vals[(task_name, metric)].append(value) # aggregate results for (task_name, metric), items in vals.items(): task = task_dict[task_name] results[task_name][metric] = task.aggregation()[metric](items) # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap # so we run them less iterations. still looking for a cleaner way to do this stderr = lm_eval.metrics.stderr_for_metric( metric=task.aggregation()[metric], bootstrap_iters=min(bootstrap_iters, 1000) if metric in ["bleu", "chrf", "ter"] else bootstrap_iters, ) if stderr is not None: results[task_name][metric + "_stderr"] = stderr(items) return { "results": dict(results), "versions": dict(versions) } def make_table(result_dict): """Generate table of results.""" from pytablewriter import MarkdownTableWriter, LatexTableWriter md_writer = MarkdownTableWriter() latex_writer = LatexTableWriter() md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"] latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"] values = [] for k, dic in result_dict["results"].items(): version = result_dict["versions"][k] for m, v in dic.items(): if m.endswith("_stderr"): continue if m + "_stderr" in dic: se = dic[m + "_stderr"] values.append([k, version, m, '%.4f' % v, '±', '%.4f' % se]) else: values.append([k, version, m, '%.4f' % v, '', '']) k = "" version = "" md_writer.value_matrix = values latex_writer.value_matrix = values # todo: make latex table look good # print(latex_writer.dumps()) return md_writer.dumps()