import numpy as np from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef from tqdm import auto as tqdm_lib from . common import HFTask, simple_accuracy_metric, yesno class Winogrande(HFTask): DATASET_PATH = "winogrande" DATASET_NAME = "winogrande_xl" def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return True def training_docs(self): if self.has_training_docs(): return self.data["train"] def validation_docs(self): if self.has_validation_docs(): return self.data["validation"] def test_docs(self): if self.has_test_docs(): return self.data["test"] def fewshot_description(self): return "Winograd schema sentence including a either a ___ blank with a missing word, making the pronoun ambiguous, or the same with the word filled in." def doc_to_text(self, doc, include_target=True): text = doc['sentence'] if include_target: answer_n = doc['answer'] if answer_n == '1': answer = doc['option1'] elif answer_n == '2': answer = doc['option2'] else: raise ValueError("Winogrande from HF datasets contained an invalid answer key") text = text.replace("_", answer) return text def evaluate(self, docs, lm, provide_description, num_fewshot): # TODO: Write evaluation function raise NotImplementedError()