import argparse import json import logging import fnmatch from lm_eval import tasks, evaluator logging.getLogger("openai").setLevel(logging.WARNING) class MultiChoice: def __init__(self, choices): self.choices = choices # Simple wildcard support (linux filename patterns) def __contains__(self, values): for value in values.split(","): if len(fnmatch.filter(self.choices, value)) == 0: return False return True def __iter__(self): for choice in self.choices: yield choice def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--model", required=True) parser.add_argument("--model_args", default="") parser.add_argument("--tasks", default=None, choices=MultiChoice(tasks.ALL_TASKS)) parser.add_argument("--provide_description", action="store_true") parser.add_argument("--num_fewshot", type=int, default=0) parser.add_argument("--batch_size", type=str, default=None) parser.add_argument("--device", type=str, default=None) parser.add_argument("--output_path", default=None) parser.add_argument("--limit", type=int, default=None) parser.add_argument("--no_cache", action="store_true") parser.add_argument("--decontamination_ngrams_path", default=None) parser.add_argument("--description_dict_path", default=None) parser.add_argument("--check_integrity", action="store_true") return parser.parse_args() # Returns a list containing all values of the source_list that # match at least one of the patterns def pattern_match(patterns, source_list): task_names = set() for pattern in patterns: for matching in fnmatch.filter(source_list, pattern): task_names.add(matching) return sorted(list(task_names)) def main(): args = parse_args() assert not args.provide_description # not implemented if args.limit: print( "WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." ) if args.tasks is None: task_names = tasks.ALL_TASKS else: task_names = pattern_match(args.tasks.split(","), tasks.ALL_TASKS) print(f"Selected Tasks: {task_names}") description_dict = {} if args.description_dict_path: with open(args.description_dict_path, "r") as f: description_dict = json.load(f) results = evaluator.simple_evaluate( model=args.model, model_args=args.model_args, tasks=task_names, num_fewshot=args.num_fewshot, batch_size=args.batch_size, device=args.device, no_cache=args.no_cache, limit=args.limit, description_dict=description_dict, decontamination_ngrams_path=args.decontamination_ngrams_path, check_integrity=args.check_integrity, ) dumped = json.dumps(results, indent=2) print(dumped) if args.output_path: with open(args.output_path, "w") as f: f.write(dumped) print( f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, " f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}" ) print(evaluator.make_table(results)) if __name__ == "__main__": main()