""" TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension https://arxiv.org/pdf/1705.03551.pdf TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence triples. TriviaQA includes 95K question-answer pairs authored by trivia enthusiasts and independently gathered evidence documents, six per question on average, that provide high quality distant supervision for answering the questions. Homepage: https://nlp.cs.washington.edu/triviaqa/ """ import inspect import lm_eval.datasets.triviaqa.triviaqa from lm_eval.base import Task, rf from lm_eval.metrics import mean _CITATION = """ @InProceedings{JoshiTriviaQA2017, author = {Joshi, Mandar and Choi, Eunsol and Weld, Daniel S. and Zettlemoyer, Luke}, title = {TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension}, booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics}, month = {July}, year = {2017}, address = {Vancouver, Canada}, publisher = {Association for Computational Linguistics}, } """ class TriviaQA(Task): VERSION = 1 DATASET_PATH = inspect.getfile(lm_eval.datasets.triviaqa.triviaqa) DATASET_NAME = None def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return False def training_docs(self): return self.dataset["train"] def validation_docs(self): return self.dataset["validation"] def test_docs(self): raise NotImplementedError() def doc_to_text(self, doc): return f"Question: {doc['question']}\nAnswer:" def should_decontaminate(self): return True def doc_to_decontamination_query(self, doc): return doc["question"] def doc_to_target(self, doc): return " " + doc["answer"]["value"] def _remove_prefixes(self, aliases): # Optimization: Remove any alias that has a strict prefix elsewhere in the list # we can do this because if the prefix is acceptable by isgreedy, we can stop looking aliases.sort() ret = [aliases[0]] for alias in aliases[1:]: if not alias.startswith(ret[-1]): ret.append(alias) return ret def construct_requests(self, doc, ctx): ret = [] for alias in self._remove_prefixes(doc["answer"]["aliases"]): _, is_prediction = rf.loglikelihood(ctx, " " + alias) ret.append(is_prediction) return ret def process_results(self, doc, results): return {"acc": float(any(results))} def aggregation(self): return { "acc": mean, } def higher_is_better(self): return {"acc": True}