import transformers from base import LM import torch import torch.nn.functional as F class GPT2LM(LM): def __init__(self, dev='cpu'): self.gpt2 = transformers.GPT2LMHeadModel.from_pretrained('gpt2').to(dev) self.tok = transformers.GPT2Tokenizer.from_pretrained('gpt2') self.dev = dev def generate(self, context, until): context = torch.tensor([self.tok.encode(context.strip())], dtype=torch.long).to(self.dev) res = self.gpt2.generate(context, eos_token_id=self.tok.encoder[until], do_sample=False, max_length=1024) # chop off the prompt and the final eos token return self.tok.decode(res[0][len(context[0]):-1]).strip() def loglikelihood(self, context, continuation): print('likelihood:', context, continuation) inp = torch.tensor([self.tok.encode(context + continuation)], dtype=torch.long).to(self.dev) ctxlen = len(self.tok.encode(context.strip())) cont_toks = inp[:, ctxlen:] # [batch, seq] logits = F.log_softmax(self.gpt2(inp)[0], dim=-1)[:, ctxlen - 1:-1] # [batch, seq, vocab] return torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(-1)