# WinoGrande ### Paper Title: `WinoGrande: An Adversarial Winograd Schema Challenge at Scale` Abstract: https://arxiv.org/abs/1907.10641 WinoGrande is a collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a fill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires commonsense reasoning. NOTE: This evaluation of Winogrande uses partial evaluation as described by Trinh & Le in Simple Method for Commonsense Reasoning (2018). See: https://arxiv.org/abs/1806.02847 Homepage: https://leaderboard.allenai.org/winogrande/submissions/public ### Citation ``` @article{sakaguchi2019winogrande, title={WinoGrande: An Adversarial Winograd Schema Challenge at Scale}, author={Sakaguchi, Keisuke and Bras, Ronan Le and Bhagavatula, Chandra and Choi, Yejin}, journal={arXiv preprint arXiv:1907.10641}, year={2019} } ``` ### Groups and Tasks #### Groups * Not part of a group yet. #### Tasks * `winogrande` ### Checklist For adding novel benchmarks/datasets to the library: * [ ] Is the task an existing benchmark in the literature? * [ ] Have you referenced the original paper that introduced the task? * [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test? If other tasks on this dataset are already supported: * [ ] Is the "Main" variant of this task clearly denoted? * [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates? * [ ] Have you noted which, if any, published evaluation setups are matched by this variant?