import torch import transformers import copy from tqdm import tqdm import torch.nn.functional as F from lm_eval import utils from lm_eval.logger import eval_logger from lm_eval.api.model import LM from lm_eval.api.registry import register_model from accelerate import Accelerator from itertools import islice @register_model("hf-causal") class HFLM(LM): def __init__( self, device="cuda", pretrained="gpt2", revision="main", low_cpu_mem_usage=None, subfolder=None, tokenizer=None, batch_size=1, ): super().__init__() assert isinstance(device, str) assert isinstance(pretrained, str) assert isinstance(batch_size, int) gpus = torch.cuda.device_count() if gpus <= 1: if device: if device not in ["cuda", "cpu"]: device = int(device) self._device = torch.device(device) eval_logger.info(f"Using device '{device}'") else: eval_logger.info("Device not specified") eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}") self._device = ( torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") ) self._rank = 0 self._world_size = 1 else: self._device = "cpu" # TODO: update this to be less of a hack once subfolder is fixed in HF revision = revision + ("/" + subfolder if subfolder is not None else "") self.model = transformers.AutoModelForCausalLM.from_pretrained( pretrained, revision=revision, low_cpu_mem_usage=low_cpu_mem_usage ).to(self.device) self.model.eval() self.tokenizer = transformers.AutoTokenizer.from_pretrained( pretrained if tokenizer is None else tokenizer, revision=revision, ) self.vocab_size = self.tokenizer.vocab_size # multithreading and batching self.batch_size_per_gpu = batch_size # todo: adaptive batch size # multigpu support with accelerate if gpus > 1: accelerator = Accelerator() if gpus > accelerator.num_processes: eval_logger.warning( "WARNING: The number of total system GPUs does not match the number of spawned processes. " "If you would like to use data parallelism, please launch the script " "with 'accelerate launch *script*'. " f"Current run will proceed with {accelerator.num_processes} devices." ) self._rank = accelerator.local_process_index self._world_size = accelerator.num_processes else: self.model = accelerator.prepare(self.model) self._device = torch.device(f"cuda:{accelerator.local_process_index}") self.accelerator = accelerator if self.accelerator.is_local_main_process: eval_logger.info(f"Using {gpus} devices with data parallelism") self._rank = self.accelerator.local_process_index self._world_size = self.accelerator.num_processes @property def eot_token_id(self): # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* return self.tokenizer.eos_token_id @property def max_length(self): try: if hasattr(self, "accelerator"): return self.accelerator.unwrap_model(self.model).config.n_ctx else: return self.model.config.n_ctx except AttributeError: # gptneoconfig doesn't have n_ctx apparently if hasattr(self, "accelerator"): return self.accelerator.unwrap_model( self.model ).config.max_position_embeddings else: return self.model.config.max_position_embeddings @property def max_gen_toks(self): return 256 @property def batch_size(self): return self.batch_size_per_gpu @property def device(self): return self._device @property def rank(self): return self._rank @property def world_size(self): return self._world_size def tok_encode(self, string: str): return self.tokenizer.encode(string, add_special_tokens=False) def tok_decode(self, tokens): return self.tokenizer.decode(tokens) def _model_call(self, inps): """ inps: a torch tensor of shape [batch, sequence] the size of sequence may vary from call to call returns: a torch tensor of shape [batch, sequence, vocab] with the logits returned from the model """ with torch.no_grad(): return self.model(inps)[0] def _model_generate(self, context, max_length, eos_token_id, **generation_kwargs): # we require users to pass do_sample=True explicitly # for non-greedy gen. This should be reevaluated when considering beam search. if "do_sample" not in generation_kwargs.keys(): generation_kwargs["do_sample"] = False if hasattr(self, "accelerator"): return self.accelerator.unwrap_model(self.model).generate( context, max_length=max_length, pad_token_id=eos_token_id, eos_token_id=eos_token_id, **generation_kwargs, ) else: return self.model.generate( context, max_length=max_length, pad_token_id=eos_token_id, eos_token_id=eos_token_id, **generation_kwargs, ) def loglikelihood(self, requests): new_reqs = [] for context, continuation in [req.args for req in requests]: if context == "": # end of text as context context_enc = [self.eot_token_id] else: context_enc = self.tok_encode(context) continuation_enc = self.tok_encode(continuation) new_reqs.append(((context, continuation), context_enc, continuation_enc)) return self._loglikelihood_tokens(new_reqs) def loglikelihood_rolling(self, requests): # TODO: Implement caching once we've confirmed the perplexity implementation # TODO: automatic batch size detection for vectorization loglikelihoods = [] for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)): rolling_token_windows = list( map( utils.make_disjoint_window, utils.get_rolling_token_windows( token_list=self.tok_encode(string), prefix_token=self.eot_token_id, max_seq_len=self.max_length, context_len=1, ), ) ) rolling_token_windows = [(None,) + x for x in rolling_token_windows] # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for # that pad_amnt = 0 if self.world_size > 1: # TODO: Comment on what we do here mytensor = torch.tensor(len(rolling_token_windows), device=self.device) gathered = ( self.accelerator.gather(mytensor).cpu().detach().numpy().tolist() ) pad_amnt = max(gathered) - gathered[self.rank] if pad_amnt > 0: rolling_token_windows += pad_amnt * [rolling_token_windows[0]] string_nll = self._loglikelihood_tokens( rolling_token_windows, disable_tqdm=True ) if (self.world_size > 1) and (pad_amnt > 0): string_nll = [x[0] for x in string_nll[:-pad_amnt]] else: # discard is_greedy string_nll = [x[0] for x in string_nll] string_nll = sum(string_nll) loglikelihoods.append(string_nll) return loglikelihoods def _loglikelihood_tokens(self, requests, disable_tqdm=False): # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context res = [] def _collate(x): # the negative sign on len(toks) sorts descending - this has a few advantages: # - time estimates will always be over not underestimates, which is more useful for planning # - to know the size of a batch when going through the list, you know the first one is always the batch # padded context length. this is useful to simplify the batching logic and more importantly to make # automatic adaptive batches much much easier to implement # - any OOMs will happen right away rather than near the end toks = x[1] + x[2] return -len(toks), tuple(toks) # TODO: automatic (variable) batch size detection for vectorization re_ord = utils.Reorderer(requests, _collate) for chunk in utils.chunks( tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))), self.batch_size, ): inps = [] cont_toks_list = [] inplens = [] padding_length = None # because vectorizing is annoying, we first convert each (context, continuation) pair to padded # tensors, then we pack them together into a batch, call the model, and then pick it all apart # again because vectorizing is annoying for _, context_enc, continuation_enc in chunk: # sanity check assert len(context_enc) > 0 assert len(continuation_enc) > 0 assert len(continuation_enc) <= self.max_length # how this all works: # CTX CONT # inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1] # model \ \ # logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the # cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice # when too long to fit in context, truncate from the left inp = torch.tensor( (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1], dtype=torch.long, ).to(self.device) (inplen,) = inp.shape cont = continuation_enc # since in _collate we make sure length is descending, the longest is always the first one. padding_length = ( padding_length if padding_length is not None else inplen ) # pad length from seq to padding_length inp = torch.cat( [ inp, # [seq] torch.zeros(padding_length - inplen, dtype=torch.long).to( inp.device ), # [padding_length - seq] ], dim=0, ) inps.append(inp.unsqueeze(0)) # [1, padding_length] cont_toks_list.append(cont) inplens.append(inplen) batched_inps = torch.cat(inps, dim=0) # [batch, padding_length multi_logits = F.log_softmax( self._model_call(batched_inps), dim=-1 ).cpu() # [batch, padding_length, vocab] for (cache_key, _, _), logits, inp, inplen, cont_toks in zip( chunk, multi_logits, inps, inplens, cont_toks_list ): # Slice to original seq length contlen = len(cont_toks) logits = logits[inplen - contlen : inplen].unsqueeze( 0 ) # [1, seq, vocab] # Check if per-token argmax is exactly equal to continuation greedy_tokens = logits.argmax(dim=-1) cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze( 0 ) # [1, seq] max_equal = (greedy_tokens == cont_toks).all() # Obtain log-probs at the corresponding continuation token indices # last_token_slice = logits[:, -1, :].squeeze(0).tolist() logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze( -1 ) # [1, seq] # Answer: (log prob, is-exact-match) answer = (float(logits.sum()), bool(max_equal)) res.append(answer) return re_ord.get_original(res) def greedy_until(self, requests): # TODO: implement fully general `until` that handles until that are # multiple tokens or that span multiple tokens correctly res = [] def _collate(x): toks = self.tok_encode(x[0]) return len(toks), x[0] re_ord = utils.Reorderer([req.args for req in requests], _collate) for context, gen_kwargs in tqdm(re_ord.get_reordered()): if isinstance(gen_kwargs, dict): gen_kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1 if "until" in gen_kwargs.keys(): until = gen_kwargs.pop("until") if isinstance(until, str): until = [gen_kwargs] elif not isinstance(until, list): raise ValueError( f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {until}" ) else: raise ValueError( f"Expected `gen_kwargs` to be of type `dict` but got {gen_kwargs}" ) if not until: until = [self.tok_decode(self.eot_token_id)] if "max_gen_toks" in gen_kwargs.keys(): max_gen_toks = gen_kwargs.pop("max_gen_toks") else: max_gen_toks = self.max_gen_toks try: (primary_until,) = self.tok_encode(until[0]) except Exception: # if our primary until would be multiple tokens long, we'll have errors. # TODO: handling this better will let us stop generating earlier + often. primary_until = self.eot_token_id context_enc = torch.tensor( [self.tok_encode(context)[max_gen_toks - self.max_length :]] ).to(self.device) cont = self._model_generate( context=context_enc, max_length=context_enc.shape[1] + max_gen_toks, eos_token_id=primary_until, **gen_kwargs, ) s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :]) for term in until: s = s.split(term)[0] res.append(s) return re_ord.get_original(res)