# Wikitext ### Paper Pointer Sentinel Mixture Models https://arxiv.org/pdf/1609.07843.pdf The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified Good and Featured articles on Wikipedia. NOTE: This `Task` is based on WikiText-2. Homepage: https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/ ### Citation ``` @misc{merity2016pointer, title={Pointer Sentinel Mixture Models}, author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher}, year={2016}, eprint={1609.07843}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Subtasks * `wikitext`: measure perplexity on the Wikitext dataset, via rolling loglikelihoods. ### Checklist * [x] Is the task an existing benchmark in the literature? * [x] Have you referenced the original paper that introduced the task? * [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test? If other tasks on this dataset are already supported: * [x] Is the "Main" variant of this task clearly denoted? * [x] Have you provided a short sentence in a README on what each new variant adds / evaluates? * [ ] Have you noted which, if any, published evaluation setups are matched by this variant?