import argparse import json import numpy as np import random from lm_eval import models, tasks def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--model', required=True) parser.add_argument('--model_args', default="") parser.add_argument('--tasks', default="all_tasks") parser.add_argument('--provide_description', action="store_true") parser.add_argument('--num_fewshot', type=int, default=1) parser.add_argument('--seed', type=int, default=1234) parser.add_argument('--output_path', default=None) parser.add_argument('--truncate', default=None) return parser.parse_args() def main(): args = parse_args() random.seed(args.seed) np.random.seed(args.seed) lm = models.get_model(args.model).create_from_arg_string(args.model_args) if args.tasks == "all_tasks": task_names = tasks.ALL_TASKS else: task_names = args.tasks.split(",") task_dict = tasks.get_task_dict(task_names) results = {} for task_name, task in task_dict.items(): if not task.has_validation_docs(): continue result = task.evaluate( docs=itertools.isslice(task.validation_docs(), stop=args.truncate), lm=lm, provide_description=args.provide_description, num_fewshot=args.num_fewshot, ) results[task_name] = result dumped = json.dumps(results, indent=2) print(dumped) if args.output_path: with open(args.output_path, "w") as f: f.write(dumped) if __name__ == "__main__": main()