""" Semantic Noise Matters for Neural Natural Language Generation http://arxiv.org/abs/1911.03905 A cleaned version of the dataset from the E2E NLG Challenge. The dataset contains MR with restaurant attributes and corresponding descriptions. Homepage: https://github.com/tuetschek/e2e-cleaning """ from lm_eval.base import PromptSourceTask, rf _CITATION = """ @inproceedings{dusek-etal-2019-semantic, title = "Semantic Noise Matters for Neural Natural Language Generation", author = "Du{\v{s}}ek, Ond{\v{r}}ej and Howcroft, David M. and Rieser, Verena", booktitle = "Proceedings of the 12th International Conference on Natural Language Generation", year = "2019", address = "Tokyo, Japan", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W19-8652", doi = "10.18653/v1/W19-8652", pages = "421--426", } """ # Work in progress class E2E_NLG_Cleaned(PromptSourceTask): VERSION = 0 DATASET_PATH = "e2e_nlg_cleaned" DATASET_NAME = None def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return True def training_docs(self): if self.has_training_docs(): # We cache training documents in `self._training_docs` for faster # few-shot processing. If the data is too large to fit in memory, # return the training data as a generator instead of a list. if self._training_docs is None: self._training_docs = list(self.dataset["train"]) return self._training_docs def validation_docs(self): if self.has_validation_docs(): return self.dataset["validation"] def test_docs(self): if self.has_test_docs(): return self.dataset["test"] def stopping_criteria(self): return '\n' def max_generation_length(self): # TODO check return 512 def invalid_doc_for_prompt(self, doc) -> bool: """The QA prompts are not applicable to all the examples, we want to filter these out.""" return self.prompt.name.endswith("_qa") def doc_to_text(self, doc) -> str: # if the response is not defined in PS, the text will be an empty string text = self.prompt.apply(doc)[0] return text def aggregation(self): """ :returns: {str: [metric_score] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metric scores """ return { "bleu": metrics.bleu, "rouge": metrics.rouge, } def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ return { "bleu": True, "rouge": True, }