""" Similarity of Semantic Relations https://arxiv.org/pdf/cs/0608100.pdf SAT (Scholastic Aptitude Test) Analogy Questions is a dataset comprising 374 multiple-choice analogy questions; 5 choices per question. Homepage: https://aclweb.org/aclwiki/SAT_Analogy_Questions_(State_of_the_art) """ import inspect import lm_eval.datasets.sat_analogies.sat_analogies from lm_eval.base import MultipleChoiceTask _CITATION = """ @article{article, author = {Turney, Peter}, year = {2006}, month = {09}, pages = {379-416}, title = {Similarity of Semantic Relations}, volume = {32}, journal = {Computational Linguistics}, doi = {10.1162/coli.2006.32.3.379} } """ class SATAnalogies(MultipleChoiceTask): VERSION = 0 DATASET_PATH = inspect.getfile(lm_eval.datasets.sat_analogies.sat_analogies) DATASET_NAME = None def __init__(self, data_dir: str): """ SAT Analog Questions is not publicly available. You must request the data by emailing Peter Turney and then download it to a local directory path which should be passed into the `data_dir` arg. """ super().__init__(data_dir=data_dir) def has_training_docs(self): return False def has_validation_docs(self): return True def has_test_docs(self): return False def training_docs(self): return [] def validation_docs(self): return map(self._process_doc, self.dataset["validation"]) def test_docs(self): return [] def _process_doc(self, doc): return { 'source': doc['source'], 'query': doc['stem'].split(' ')[:2], 'choices': ["{} is to {}".format(*c.split(' ')[:2]) for c in doc["choices"]], 'gold': ['a', 'b', 'c', 'd', 'e'].index(doc['solution'].strip()), } def doc_to_text(self, doc): return "{} is to {} as".format(*doc['query'])