import transformers import torch from lm_eval.base import BaseLM class HFLM(BaseLM): def __init__(self, device='cuda', pretrained='gpt2', revision='main', subfolder=None, tokenizer=None, batch_size=1): super().__init__() assert isinstance(device, str) assert isinstance(pretrained, str) assert isinstance(batch_size, int) if device: if device not in ["cuda", "cpu"]: device = int(device) self._device = torch.device(device) print(f"Using device '{device}'") else: print("Device not specificed") print(f"Cuda Available? {torch.cuda.is_available()}") self._device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # TODO: update this to be less of a hack once subfolder is fixed in HF self.gpt2 = transformers.AutoModelForCausalLM.from_pretrained( pretrained, revision=revision + ("/" + subfolder if subfolder is not None else "") ).to(self.device) self.gpt2.eval() # pretrained tokenizer for neo is broken for now so just hard-coding this to gpt2 self.tokenizer = transformers.AutoTokenizer.from_pretrained( pretrained if tokenizer is None else tokenizer, revision=revision, subfolder=subfolder) assert isinstance(self.tokenizer, ( transformers.GPT2Tokenizer, transformers.GPT2TokenizerFast, transformers.T5Tokenizer, transformers.T5TokenizerFast, )), "this tokenizer has not been checked for compatibility yet!" self.vocab_size = self.tokenizer.vocab_size if isinstance(self.tokenizer, (transformers.GPT2Tokenizer, transformers.GPT2TokenizerFast)): assert self.tokenizer.encode('hello\n\nhello') == [31373, 198, 198, 31373], \ self.tokenizer.encode('hello\n\nhello') # multithreading and batching self.batch_size_per_gpu = batch_size # todo: adaptive batch size # TODO: fix multi-gpu # gpus = torch.cuda.device_count() # if gpus > 1: # self.gpt2 = nn.DataParallel(self.gpt2) @property def eot_token_id(self): # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* return self.tokenizer.eos_token_id @property def max_length(self): try: return self.gpt2.config.n_ctx except AttributeError: # gptneoconfig doesn't have n_ctx apparently return self.gpt2.config.max_position_embeddings @property def max_gen_toks(self): return 256 @property def batch_size(self): # TODO: fix multi-gpu return self.batch_size_per_gpu # * gpus @property def device(self): # TODO: fix multi-gpu return self._device def tok_encode(self, string: str): return self.tokenizer.encode(string, add_special_tokens=False) def tok_decode(self, tokens): return self.tokenizer.decode(tokens) def _model_call(self, inps): """ inps: a torch tensor of shape [batch, sequence] the size of sequence may vary from call to call returns: a torch tensor of shape [batch, sequence, vocab] with the logits returned from the model """ with torch.no_grad(): return self.gpt2(inps)[0][:, :, :50257] def _model_generate(self, context, max_length, eos_token_id): return self.gpt2.generate( context, max_length=max_length, eos_token_id=eos_token_id, do_sample=False ) # for backwards compatibility GPT2LM = HFLM