import numpy as np from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef from tqdm import auto as tqdm_lib from . common import HFTask, simple_accuracy_metric, yesno class HellaSwag(HFTask): DATASET_PATH = "hellaswag" DATASET_NAME = None def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return True def training_docs(self): if self.has_training_docs(): return self.data["train"] def validation_docs(self): if self.has_validation_docs(): return self.data["validation"] def test_docs(self): if self.has_test_docs(): return self.data["test"] def fewshot_description(self): return "Label for the relevant action: Sentences describing the context, with an incomplete sentence trailing\nanswer that plausibly completes the situation." def doc_to_text(self, doc, include_target=True): text = doc['activity_label'] + ': ' + doc['ctx'] + '\n' if include_target: letter_answer = doc['label'] if letter_answer == '0': index = 0 elif letter_answer == '1': index = 1 elif letter_answer == '2': index = 2 elif letter_answer == '3': index = 3 else: raise ValueError("HellaSwag from HF datasets contained an invalid answer key") text += doc['endings'][index] return text def evaluate(self, docs, lm, provide_description, num_fewshot): # TODO: Write evaluation function raise NotImplementedError()