""" TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension https://arxiv.org/pdf/1705.03551.pdf TriviaQA is a reading comprehension dataset containing over 650K question-answer-evidence triples. TriviaQA includes 95K question-answer pairs authored by trivia enthusiasts and independently gathered evidence documents, six per question on average, that provide high quality distant supervision for answering the questions. Homepage: https://nlp.cs.washington.edu/triviaqa/ """ import inspect import string from lm_eval.base import Task, rf from lm_eval.metrics import mean _CITATION = """ @InProceedings{JoshiTriviaQA2017, author = {Joshi, Mandar and Choi, Eunsol and Weld, Daniel S. and Zettlemoyer, Luke}, title = {TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension}, booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics}, month = {July}, year = {2017}, address = {Vancouver, Canada}, publisher = {Association for Computational Linguistics}, } """ class TriviaQA(Task): VERSION = 3 DATASET_PATH = "trivia_qa" DATASET_NAME = "rc.nocontext" def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return False def training_docs(self): return self.dataset["train"] def validation_docs(self): return self.dataset["validation"] def test_docs(self): raise NotImplementedError() def doc_to_text(self, doc): return f"Question: {doc['question']}\nAnswer:" def should_decontaminate(self): return True def doc_to_decontamination_query(self, doc): return doc["question"] def doc_to_target(self, doc): return " " + doc["answer"]["value"] def construct_requests(self, doc, ctx): """Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. """ continuation = rf.greedy_until(ctx, {"until": ["\n", ".", ","]}) return continuation def process_results(self, doc, results): continuation = ( results[0] .strip() .lower() .translate(str.maketrans("", "", string.punctuation)) ) list_of_candidates = [ alias.lower().translate(str.maketrans("", "", string.punctuation)) for alias in doc["answer"]["aliases"] ] return {"em": float(continuation in list_of_candidates)} def aggregation(self): return { "em": mean, } def higher_is_better(self): return {"em": True}