import json import random import os from lm_eval.base import Task from ..utils import sh class WinogradSchemaChallenge273(Task): def __init__(self): super().__init__() def download(self): if not os.path.exists('data/wsc273'): sh(""" mkdir -p data/wsc273 wget https://git.cse.msu.edu/bakerb15/nlp-final-project/raw/master/Winogard/reproduce/commonsense_test/wsc273.json -O data/wsc273/wsc273.json """) def has_training_docs(self): return False def has_validation_docs(self): return False def has_test_docs(self): return True def training_docs(self): return [] def validation_docs(self): return [] def test_docs(self): myjson = json.load(open('data/wsc273/wsc273.json')) return self.load_doc(myjson) def fewshot_description(self): # TODO: redo description return "Winograd schema sentence with correct continuation. True. Winograd schema sentence with incorrect continuation. False." def load_doc(self, myjson): docs = [] for i in range(0, 273 * 2, 2): item1 = myjson[i] item2 = myjson[i+1] if item1['question_id'] != item2['question_id']: raise ValueError("WSC273 has missing completion pair.") question_id = item1['question_id'] if item1['correctness'] == True: doc = { 'id': question_id, 'completions': { 'T': item1['substitution'], 'F': item2['substitution'], }, } if item2['correctness'] == True: doc = { 'id': question_id, 'completions': { 'F': item1['substitution'], 'T': item2['substitution'], }, } docs.append(doc) return docs def doc_to_text(self, doc): # TODO: implement pass def doc_to_target(self, doc): # TODO: implement pass def construct_requests(self, doc, ctx): """ Uses RequestFactory to construct Requests and returns an iterable of Requests which will be sent to the LM. :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param ctx: str The context string, generated by fewshot_context. This includes the natural language description, as well as the few shot examples, and the question part of the document for `doc`. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def process_results(self, doc, results): """Take a single document and the LM results and evaluates, returning a dict where keys are the names of submetrics and values are the values of the metric for that one document :param doc: The document as returned from training_docs, validation_docs, or test_docs. :param results: The results of the requests created in construct_requests. """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def aggregation(self): """ :returns: {str: [float] -> float} A dictionary where keys are the names of submetrics and values are functions that aggregate a list of metrics """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented') def higher_is_better(self): """ :returns: {str: bool} A dictionary where keys are the names of submetrics and values are whether a higher value of the submetric is better """ # TODO: implement evaluation. raise NotImplementedError('Evaluation not implemented')