""" Pointer Sentinel Mixture Models https://arxiv.org/pdf/1609.07843.pdf The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified Good and Featured articles on Wikipedia. NOTE: This `Task` is based on WikiText-2. Homepage: https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/ """ import os import re from lm_eval.base import rf, PerplexityTask from lm_eval.utils import sh from best_download import download_file _CITATION = """ @misc{merity2016pointer, title={Pointer Sentinel Mixture Models}, author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher}, year={2016}, eprint={1609.07843}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ def wikitext_detokenizer(string): # contractions string = string.replace("s '", "s'") string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string) # number separators string = string.replace(" @-@ ", "-") string = string.replace(" @,@ ", ",") string = string.replace(" @.@ ", ".") # punctuation string = string.replace(" : ", ": ") string = string.replace(" ; ", "; ") string = string.replace(" . ", ". ") string = string.replace(" ! ", "! ") string = string.replace(" ? ", "? ") string = string.replace(" , ", ", ") # double brackets string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string) string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string) string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string) string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string) string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string) # miscellaneous string = string.replace("= = = =", "====") string = string.replace("= = =", "===") string = string.replace("= =", "==") string = string.replace(" " + chr(176) + " ", chr(176)) string = string.replace(" \n", "\n") string = string.replace("\n ", "\n") string = string.replace(" N ", " 1 ") string = string.replace(" 's", "'s") return string class WikiText(PerplexityTask): VERSION = 1 def download(self): if not os.path.exists('data/wikitext/wikitext-2-raw/wiki.valid.raw'): os.makedirs("data/wikitext/", exist_ok=True) download_file("https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip", local_file="data/wikitext/wikitext-2-raw-v1.zip", expected_checksum="ef7edb566e3e2b2d31b29c1fdb0c89a4cc683597484c3dc2517919c615435a11") sh("cd data/wikitext/ && unzip wikitext-2-raw-v1.zip") def has_validation_docs(self): return True def has_train_docs(self): return True def has_test_docs(self): return True def docs_for_split(self, split): ret = [] for line in open(f"data/wikitext/wikitext-2-raw/wiki.{split}.raw").read().split('\n'): rline = line.replace("= = =", "===").replace("= =", "==").strip() if rline.startswith('= ') and rline.strip().endswith(' ='): s = '\n'.join(ret) if s.strip(): yield s ret = [] ret.append(line) yield '\n'.join(ret) def validation_docs(self): return self.docs_for_split('valid') def train_docs(self): return self.docs_for_split('train') def test_docs(self): return self.docs_for_split('test') def doc_to_target(self, doc): return wikitext_detokenizer(doc) def count_words(self, doc): # count number of words in *original doc before detokenization* return len(re.split(r"\s+", doc))