""" Similarity of Semantic Relations https://arxiv.org/pdf/cs/0608100.pdf SAT (Scholastic Aptitude Test) Analogy Questions is a dataset comprising 374 multiple-choice analogy questions; 5 choices per question. Homepage: https://aclweb.org/aclwiki/SAT_Analogy_Questions_(State_of_the_art) """ import os from lm_eval.base import MultipleChoiceTask _CITATION = """ @article{article, author = {Turney, Peter}, year = {2006}, month = {09}, pages = {379-416}, title = {Similarity of Semantic Relations}, volume = {32}, journal = {Computational Linguistics}, doi = {10.1162/coli.2006.32.3.379} } """ class SATAnalogies(MultipleChoiceTask): VERSION = 0 NEEDS_MANUAL_DL = True def __init__(self): super().__init__() def download(self): # We should be using a checksum here. # The canonical sha256 hash is below: # 9dece377d8d57253ef8c78370ff15de0bb1d9e90a82c815a67ba1e621e921bfc if not os.path.exists('data/sat/SAT-package-V3.txt'): raise NotImplementedError('SAT Analogies dataset is not provided. Follow instructions on https://aclweb.org/aclwiki/SAT_Analogy_Questions_(State_of_the_art) to locate.') def has_training_docs(self): return False def has_validation_docs(self): return True def has_test_docs(self): return False def training_docs(self): return [] def test_docs(self): return [] def validation_docs(self): data = [] with open("data/sat/SAT-package-V3.txt", "r") as f: record = [] for line in f: line = line.strip() if len(line) == 0 and record: data.append(record) record = [] elif len(line) > 0 and line[0] == '#': continue else: record.append(line) data.append(record) for record in data: source = record[-8] query = record[-7] choices = record[-6:-1] answer_key = record[-1] doc = { 'source': source, 'query': query.split(' ')[:2], 'choices': ["{} is to {}".format(*c.split(' ')[:2]) for c in choices], 'gold': ['a','b','c','d','e'].index(answer_key.strip()), } yield doc def doc_to_text(self, doc): return "{} is to {} as".format(*doc['query'])