""" MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms https://arxiv.org/pdf/1905.13319.pdf MathQA is a large-scale dataset of 37k English multiple-choice math word problems covering multiple math domain categories by modeling operation programs corresponding to word problems in the AQuA dataset (Ling et al., 2017). Homepage: https://math-qa.github.io/math-QA/ """ import re from lm_eval.base import MultipleChoiceTask from . common import HFTask _CITATION = """ @misc{amini2019mathqa, title={MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms}, author={Aida Amini and Saadia Gabriel and Peter Lin and Rik Koncel-Kedziorski and Yejin Choi and Hannaneh Hajishirzi}, year={2019}, eprint={1905.13319}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ class MathQA(HFTask, MultipleChoiceTask): VERSION = 0 DATASET_PATH = "math_qa" DATASET_NAME = None def has_training_docs(self): return True def has_validation_docs(self): return True def has_test_docs(self): return True def _convert_standard(self, doc): answer_idx = ['a', 'b', 'c', 'd', 'e'].index(doc['correct']) choices = [c[4:].rstrip(" ,") for c in re.findall(r"[abcd] \) .*?, |e \) .*?$", doc['options'])] out_doc = { "query": "Question: " + doc['Problem'] +"\nAnswer:", "choices": choices, "gold": answer_idx, } return out_doc def doc_to_text(self, doc): return doc["query"]