""" The LAMBADA dataset: Word prediction requiring a broad discourse context∗ https://arxiv.org/pdf/1606.06031.pdf The LAMBADA dataset machine-translated to other languages. LAMBADA is a dataset to evaluate the capabilities of computational models for text understanding by means of a word prediction task. LAMBADA is a collection of narrative passages sharing the characteristic that human subjects are able to guess their last word if they are exposed to the whole passage, but not if they only see the last sentence preceding the target word. To succeed on LAMBADA, computational models cannot simply rely on local context, but must be able to keep track of information in the broader discourse. Homepage: https://zenodo.org/record/2630551#.X4Xzn5NKjUI """ from . import lambada from lm_eval.base import Task, rf from lm_eval.metrics import mean, perplexity from lm_eval.utils import sh from best_download import download_file import json from functools import partial import os _CITATION = """ @misc{ author={Paperno, Denis and Kruszewski, Germán and Lazaridou, Angeliki and Pham, Quan Ngoc and Bernardi, Raffaella and Pezzelle, Sandro and Baroni, Marco and Boleda, Gemma and Fernández, Raquel}, title={The LAMBADA dataset}, DOI={10.5281/zenodo.2630551}, publisher={Zenodo}, year={2016}, month={Aug} } """ LANGS = ["en", "fr", "de", "it", "es"] CHECKSUMS = {"en": "4aa8d02cd17c719165fc8a7887fddd641f43fcafa4b1c806ca8abc31fabdb226", "fr": "941ec6a73dba7dc91c860bf493eb66a527cd430148827a4753a4535a046bf362", "de": "51c6c1795894c46e88e4c104b5667f488efe79081fb34d746b82b8caa663865e", "it": "86654237716702ab74f42855ae5a78455c1b0e50054a4593fb9c6fcf7fad0850", "es": "ffd760026c647fb43c67ce1bc56fd527937304b348712dce33190ea6caba6f9c" } class MultilingualLAMBADA(lambada.LAMBADA): VERSION = 0 def __init__(self, lang=None): self.LANG = lang super().__init__() def download(self): sh("mkdir -p data/lambada") f = f"data/lambada/lambada_test_{self.LANG}.jsonl" url = f"http://eaidata.bmk.sh/data/lambada_test_{self.LANG}.jsonl" try: if not os.path.exists(f): download_file( url, local_file=f, expected_checksum=CHECKSUMS[self.LANG] ) except: # fallback - for some reason best_download doesnt work all the time here sh(f"wget {url} -O {f}") sh(f'echo "{CHECKSUMS[self.LANG]} {f}" | sha256sum --check') def validation_docs(self): with open(f"data/lambada/lambada_test_{self.LANG}.jsonl") as fh: for line in fh: yield json.loads(line) class MultilingualLAMBADAEN(MultilingualLAMBADA): def __init__(self): super().__init__('en') class MultilingualLAMBADAFR(MultilingualLAMBADA): def __init__(self): super().__init__('fr') class MultilingualLAMBADADE(MultilingualLAMBADA): def __init__(self): super().__init__('de') class MultilingualLAMBADAIT(MultilingualLAMBADA): def __init__(self): super().__init__('it') class MultilingualLAMBADAES(MultilingualLAMBADA): def __init__(self): super().__init__('es') LANG_CLASSES = [MultilingualLAMBADAEN, MultilingualLAMBADAFR, MultilingualLAMBADADE, MultilingualLAMBADAIT, MultilingualLAMBADAES] def construct_tasks(): tasks = {} for lang, lang_class in zip(LANGS, LANG_CLASSES): tasks[f"lambada_mt_{lang}"] = lang_class return tasks