#!/bin/bash models=( "masakhane/African-ultrachat-alpaca" "masakhane/zephyr-7b-gemma-sft-african-alpaca" "masakhane/zephyr-7b-gemma-sft-african-ultrachat-5k" "google/flan-t5-xxl" "bigscience/mt0-xxl-mt" "CohereForAI/aya-101" "bigscience/bloomz-7b1-mt" "meta-llama/Llama-2-7b-chat-hf" "meta-llama/Meta-Llama-3-8B-Instruct" "meta-llama/Meta-Llama-3-70B-Instruct" "google/gemma-1.1-7b-it" "RWKV/v5-EagleX-v2-7B-HF" "RWKV/rwkv-6-world-7b" ) task=afrimgsm_direct_amh,afrimgsm_direct_ibo,afrimgsm_direct_fra,afrimgsm_direct_sna,afrimgsm_direct_lin,afrimgsm_direct_wol,afrimgsm_direct_ewe,afrimgsm_direct_lug,afrimgsm_direct_xho,afrimgsm_direct_kin,afrimgsm_direct_twi,afrimgsm_direct_zul,afrimgsm_direct_orm,afrimgsm_direct_yor,afrimgsm_direct_hau,afrimgsm_direct_sot,afrimgsm_direct_swa for model in "${models[@]}" do echo "Evaluating model: $model" export OUTPUT_DIR=results/${model##*/} mkdir -p "$OUTPUT_DIR" lm_eval --model hf \ --model_args "pretrained=${model}" \ --tasks $task\ --device cuda:0 \ --batch_size 16 \ --num_fewshot 0 \ --verbosity DEBUG done