[["Figure 45.9 When resources are unlimited, populations exhibit exponential growth, resulting in a J-shaped curve. When resources are limited, populations exhibit logistic growth. In logistic growth, population expansion decreases as resources become scarce, and it levels off when the carrying capacity of the environment is reached, resulting in an S-shaped curve.\nQuestion: When resources are limited, populations exhibit what type of growth?\nAnswer:", " efficient growth"], ["Figure 45.9 When resources are unlimited, populations exhibit exponential growth, resulting in a J-shaped curve. When resources are limited, populations exhibit logistic growth. In logistic growth, population expansion decreases as resources become scarce, and it levels off when the carrying capacity of the environment is reached, resulting in an S-shaped curve.\nQuestion: When resources are limited, populations exhibit what type of growth?\nAnswer:", " component growth"], ["Figure 45.9 When resources are unlimited, populations exhibit exponential growth, resulting in a J-shaped curve. When resources are limited, populations exhibit logistic growth. In logistic growth, population expansion decreases as resources become scarce, and it levels off when the carrying capacity of the environment is reached, resulting in an S-shaped curve.\nQuestion: When resources are limited, populations exhibit what type of growth?\nAnswer:", " lasting growth"], ["Figure 45.9 When resources are unlimited, populations exhibit exponential growth, resulting in a J-shaped curve. When resources are limited, populations exhibit logistic growth. In logistic growth, population expansion decreases as resources become scarce, and it levels off when the carrying capacity of the environment is reached, resulting in an S-shaped curve.\nQuestion: When resources are limited, populations exhibit what type of growth?\nAnswer:", " logistic growth"], ["The Sun gives off energy in tiny packets called photons . Photons travel in waves. These waves make up electromagnetic radiation . The image below models a wave of light ( Figure below ). Notice the wavelength in the figure. Waves with shorter wavelengths have more energy.\nQuestion: The sun gives off energy in tiny packets called what?\nAnswer:", " ions"], ["The Sun gives off energy in tiny packets called photons . Photons travel in waves. These waves make up electromagnetic radiation . The image below models a wave of light ( Figure below ). Notice the wavelength in the figure. Waves with shorter wavelengths have more energy.\nQuestion: The sun gives off energy in tiny packets called what?\nAnswer:", " electrons"], ["The Sun gives off energy in tiny packets called photons . Photons travel in waves. These waves make up electromagnetic radiation . The image below models a wave of light ( Figure below ). Notice the wavelength in the figure. Waves with shorter wavelengths have more energy.\nQuestion: The sun gives off energy in tiny packets called what?\nAnswer:", " atoms"], ["The Sun gives off energy in tiny packets called photons . Photons travel in waves. These waves make up electromagnetic radiation . The image below models a wave of light ( Figure below ). Notice the wavelength in the figure. Waves with shorter wavelengths have more energy.\nQuestion: The sun gives off energy in tiny packets called what?\nAnswer:", " photons"], ["Which of the following statements about the small intestine is false? a. Absorptive cells that line the small intestine have microvilli, small projections that increase surface area and aid in the absorption of food. The inside of the small intestine has many folds, called villi. Microvilli are lined with blood vessels as well as lymphatic vessels. The inside of the small intestine is called the lumen. The human small intestine is over 6m long and is divided into three parts: the duodenum, the jejunum, and the ileum. The \u201cC-shaped,\u201d fixed part of the small intestine is called the duodenum and is shown in Figure 34.11. The duodenum is separated from the stomach by the pyloric sphincter which opens to allow chyme to move from the stomach to the duodenum. In the duodenum, chyme is mixed with pancreatic juices in an alkaline solution rich in bicarbonate that neutralizes the acidity of chyme and acts as a buffer. Pancreatic juices also contain several digestive enzymes. Digestive juices from the pancreas, liver, and gallbladder, as well as from gland cells of the intestinal wall itself, enter the duodenum. Bile is produced in the liver and stored and concentrated in the gallbladder. Bile contains bile salts which emulsify lipids while the pancreas produces enzymes that catabolize starches, disaccharides, proteins, and fats. These digestive juices break down the food particles in the chyme into glucose, triglycerides, and amino acids. Some chemical digestion of food takes place in the duodenum. Absorption of fatty acids also takes place in the duodenum. The second part of the small intestine is called the jejunum, shown in Figure 34.11. Here, hydrolysis of nutrients is continued while most of the carbohydrates and amino acids are absorbed through the intestinal lining. The bulk of chemical digestion and nutrient absorption occurs in the jejunum.\nQuestion: The three parts of the human small intestine is the duodenum, jejunum, and what?\nAnswer:", " appendix"], ["Which of the following statements about the small intestine is false? a. Absorptive cells that line the small intestine have microvilli, small projections that increase surface area and aid in the absorption of food. The inside of the small intestine has many folds, called villi. Microvilli are lined with blood vessels as well as lymphatic vessels. The inside of the small intestine is called the lumen. The human small intestine is over 6m long and is divided into three parts: the duodenum, the jejunum, and the ileum. The \u201cC-shaped,\u201d fixed part of the small intestine is called the duodenum and is shown in Figure 34.11. The duodenum is separated from the stomach by the pyloric sphincter which opens to allow chyme to move from the stomach to the duodenum. In the duodenum, chyme is mixed with pancreatic juices in an alkaline solution rich in bicarbonate that neutralizes the acidity of chyme and acts as a buffer. Pancreatic juices also contain several digestive enzymes. Digestive juices from the pancreas, liver, and gallbladder, as well as from gland cells of the intestinal wall itself, enter the duodenum. Bile is produced in the liver and stored and concentrated in the gallbladder. Bile contains bile salts which emulsify lipids while the pancreas produces enzymes that catabolize starches, disaccharides, proteins, and fats. These digestive juices break down the food particles in the chyme into glucose, triglycerides, and amino acids. Some chemical digestion of food takes place in the duodenum. Absorption of fatty acids also takes place in the duodenum. The second part of the small intestine is called the jejunum, shown in Figure 34.11. Here, hydrolysis of nutrients is continued while most of the carbohydrates and amino acids are absorbed through the intestinal lining. The bulk of chemical digestion and nutrient absorption occurs in the jejunum.\nQuestion: The three parts of the human small intestine is the duodenum, jejunum, and what?\nAnswer:", " colon"], ["Which of the following statements about the small intestine is false? a. Absorptive cells that line the small intestine have microvilli, small projections that increase surface area and aid in the absorption of food. The inside of the small intestine has many folds, called villi. Microvilli are lined with blood vessels as well as lymphatic vessels. The inside of the small intestine is called the lumen. The human small intestine is over 6m long and is divided into three parts: the duodenum, the jejunum, and the ileum. The \u201cC-shaped,\u201d fixed part of the small intestine is called the duodenum and is shown in Figure 34.11. The duodenum is separated from the stomach by the pyloric sphincter which opens to allow chyme to move from the stomach to the duodenum. In the duodenum, chyme is mixed with pancreatic juices in an alkaline solution rich in bicarbonate that neutralizes the acidity of chyme and acts as a buffer. Pancreatic juices also contain several digestive enzymes. Digestive juices from the pancreas, liver, and gallbladder, as well as from gland cells of the intestinal wall itself, enter the duodenum. Bile is produced in the liver and stored and concentrated in the gallbladder. Bile contains bile salts which emulsify lipids while the pancreas produces enzymes that catabolize starches, disaccharides, proteins, and fats. These digestive juices break down the food particles in the chyme into glucose, triglycerides, and amino acids. Some chemical digestion of food takes place in the duodenum. Absorption of fatty acids also takes place in the duodenum. The second part of the small intestine is called the jejunum, shown in Figure 34.11. Here, hydrolysis of nutrients is continued while most of the carbohydrates and amino acids are absorbed through the intestinal lining. The bulk of chemical digestion and nutrient absorption occurs in the jejunum.\nQuestion: The three parts of the human small intestine is the duodenum, jejunum, and what?\nAnswer:", " cecum"], ["Which of the following statements about the small intestine is false? a. Absorptive cells that line the small intestine have microvilli, small projections that increase surface area and aid in the absorption of food. The inside of the small intestine has many folds, called villi. Microvilli are lined with blood vessels as well as lymphatic vessels. The inside of the small intestine is called the lumen. The human small intestine is over 6m long and is divided into three parts: the duodenum, the jejunum, and the ileum. The \u201cC-shaped,\u201d fixed part of the small intestine is called the duodenum and is shown in Figure 34.11. The duodenum is separated from the stomach by the pyloric sphincter which opens to allow chyme to move from the stomach to the duodenum. In the duodenum, chyme is mixed with pancreatic juices in an alkaline solution rich in bicarbonate that neutralizes the acidity of chyme and acts as a buffer. Pancreatic juices also contain several digestive enzymes. Digestive juices from the pancreas, liver, and gallbladder, as well as from gland cells of the intestinal wall itself, enter the duodenum. Bile is produced in the liver and stored and concentrated in the gallbladder. Bile contains bile salts which emulsify lipids while the pancreas produces enzymes that catabolize starches, disaccharides, proteins, and fats. These digestive juices break down the food particles in the chyme into glucose, triglycerides, and amino acids. Some chemical digestion of food takes place in the duodenum. Absorption of fatty acids also takes place in the duodenum. The second part of the small intestine is called the jejunum, shown in Figure 34.11. Here, hydrolysis of nutrients is continued while most of the carbohydrates and amino acids are absorbed through the intestinal lining. The bulk of chemical digestion and nutrient absorption occurs in the jejunum.\nQuestion: The three parts of the human small intestine is the duodenum, jejunum, and what?\nAnswer:", " ileum"], ["There are two kinds of crust. Oceanic crust is made of basalt lavas that flow onto the seafloor. It is relatively thin, between 5 to 12 kilometers thick (3 - 8 miles). The rocks of the oceanic crust are denser (3.0 g/cm 3 ) than the rocks that make up the continents. Thick layers of mud cover much of the ocean floor.\nQuestion: What type of crust is made of basalt lavas that flow onto the seafloor?\nAnswer:", " exotic"], ["There are two kinds of crust. Oceanic crust is made of basalt lavas that flow onto the seafloor. It is relatively thin, between 5 to 12 kilometers thick (3 - 8 miles). The rocks of the oceanic crust are denser (3.0 g/cm 3 ) than the rocks that make up the continents. Thick layers of mud cover much of the ocean floor.\nQuestion: What type of crust is made of basalt lavas that flow onto the seafloor?\nAnswer:", " endotopic"], ["There are two kinds of crust. Oceanic crust is made of basalt lavas that flow onto the seafloor. It is relatively thin, between 5 to 12 kilometers thick (3 - 8 miles). The rocks of the oceanic crust are denser (3.0 g/cm 3 ) than the rocks that make up the continents. Thick layers of mud cover much of the ocean floor.\nQuestion: What type of crust is made of basalt lavas that flow onto the seafloor?\nAnswer:", " warm"], ["There are two kinds of crust. Oceanic crust is made of basalt lavas that flow onto the seafloor. It is relatively thin, between 5 to 12 kilometers thick (3 - 8 miles). The rocks of the oceanic crust are denser (3.0 g/cm 3 ) than the rocks that make up the continents. Thick layers of mud cover much of the ocean floor.\nQuestion: What type of crust is made of basalt lavas that flow onto the seafloor?\nAnswer:", " oceanic"], ["Watch this Discovery Channel animation (http://openstaxcollege. org/l/adrenaline) describing the flight-or-flight response. Long-term Stress Response Long-term stress response differs from short-term stress response. The body cannot sustain the bursts of energy mediated by epinephrine and norepinephrine for long times. Instead, other hormones come into play. In a long-term stress response, the hypothalamus triggers the release of ACTH from the anterior pituitary gland. The adrenal cortex is stimulated by ACTH to release steroid hormones called corticosteroids. Corticosteroids turn on transcription of certain genes in the nuclei of target cells. They change enzyme concentrations in the cytoplasm and affect cellular metabolism. There are two main corticosteroids: glucocorticoids such as cortisol, and mineralocorticoids such as aldosterone. These hormones target the breakdown of fat into fatty acids in the adipose tissue. The fatty acids are released into the bloodstream for other tissues to use for ATP production. The glucocorticoids primarily affect glucose metabolism by stimulating glucose synthesis. Glucocorticoids also have anti-inflammatory properties through inhibition of the immune system. For example, cortisone is used as an anti-inflammatory medication; however, it cannot be used long term as it increases susceptibility to disease due to its immune-suppressing effects. Mineralocorticoids function to regulate ion and water balance of the body. The hormone aldosterone stimulates the reabsorption of water and sodium ions in the kidney, which results in increased blood pressure and volume. Hypersecretion of glucocorticoids can cause a condition known as Cushing\u2019s disease, characterized by a shifting of fat storage areas of the body. This can cause the accumulation of adipose tissue in the face and neck, and excessive glucose in the blood. Hyposecretion of the corticosteroids can cause Addison\u2019s disease, which may result in bronzing of the skin, hypoglycemia, and low electrolyte levels in the blood.\nQuestion: The body cannot sustain for very long the bursts of energy mediated by epinephrine and norepinephrine, hormones associated with what stress response?\nAnswer:", " do-or-die"], ["Watch this Discovery Channel animation (http://openstaxcollege. org/l/adrenaline) describing the flight-or-flight response. Long-term Stress Response Long-term stress response differs from short-term stress response. The body cannot sustain the bursts of energy mediated by epinephrine and norepinephrine for long times. Instead, other hormones come into play. In a long-term stress response, the hypothalamus triggers the release of ACTH from the anterior pituitary gland. The adrenal cortex is stimulated by ACTH to release steroid hormones called corticosteroids. Corticosteroids turn on transcription of certain genes in the nuclei of target cells. They change enzyme concentrations in the cytoplasm and affect cellular metabolism. There are two main corticosteroids: glucocorticoids such as cortisol, and mineralocorticoids such as aldosterone. These hormones target the breakdown of fat into fatty acids in the adipose tissue. The fatty acids are released into the bloodstream for other tissues to use for ATP production. The glucocorticoids primarily affect glucose metabolism by stimulating glucose synthesis. Glucocorticoids also have anti-inflammatory properties through inhibition of the immune system. For example, cortisone is used as an anti-inflammatory medication; however, it cannot be used long term as it increases susceptibility to disease due to its immune-suppressing effects. Mineralocorticoids function to regulate ion and water balance of the body. The hormone aldosterone stimulates the reabsorption of water and sodium ions in the kidney, which results in increased blood pressure and volume. Hypersecretion of glucocorticoids can cause a condition known as Cushing\u2019s disease, characterized by a shifting of fat storage areas of the body. This can cause the accumulation of adipose tissue in the face and neck, and excessive glucose in the blood. Hyposecretion of the corticosteroids can cause Addison\u2019s disease, which may result in bronzing of the skin, hypoglycemia, and low electrolyte levels in the blood.\nQuestion: The body cannot sustain for very long the bursts of energy mediated by epinephrine and norepinephrine, hormones associated with what stress response?\nAnswer:", " fainting"], ["Watch this Discovery Channel animation (http://openstaxcollege. org/l/adrenaline) describing the flight-or-flight response. Long-term Stress Response Long-term stress response differs from short-term stress response. The body cannot sustain the bursts of energy mediated by epinephrine and norepinephrine for long times. Instead, other hormones come into play. In a long-term stress response, the hypothalamus triggers the release of ACTH from the anterior pituitary gland. The adrenal cortex is stimulated by ACTH to release steroid hormones called corticosteroids. Corticosteroids turn on transcription of certain genes in the nuclei of target cells. They change enzyme concentrations in the cytoplasm and affect cellular metabolism. There are two main corticosteroids: glucocorticoids such as cortisol, and mineralocorticoids such as aldosterone. These hormones target the breakdown of fat into fatty acids in the adipose tissue. The fatty acids are released into the bloodstream for other tissues to use for ATP production. The glucocorticoids primarily affect glucose metabolism by stimulating glucose synthesis. Glucocorticoids also have anti-inflammatory properties through inhibition of the immune system. For example, cortisone is used as an anti-inflammatory medication; however, it cannot be used long term as it increases susceptibility to disease due to its immune-suppressing effects. Mineralocorticoids function to regulate ion and water balance of the body. The hormone aldosterone stimulates the reabsorption of water and sodium ions in the kidney, which results in increased blood pressure and volume. Hypersecretion of glucocorticoids can cause a condition known as Cushing\u2019s disease, characterized by a shifting of fat storage areas of the body. This can cause the accumulation of adipose tissue in the face and neck, and excessive glucose in the blood. Hyposecretion of the corticosteroids can cause Addison\u2019s disease, which may result in bronzing of the skin, hypoglycemia, and low electrolyte levels in the blood.\nQuestion: The body cannot sustain for very long the bursts of energy mediated by epinephrine and norepinephrine, hormones associated with what stress response?\nAnswer:", " sink-or-swim"], ["Watch this Discovery Channel animation (http://openstaxcollege. org/l/adrenaline) describing the flight-or-flight response. Long-term Stress Response Long-term stress response differs from short-term stress response. The body cannot sustain the bursts of energy mediated by epinephrine and norepinephrine for long times. Instead, other hormones come into play. In a long-term stress response, the hypothalamus triggers the release of ACTH from the anterior pituitary gland. The adrenal cortex is stimulated by ACTH to release steroid hormones called corticosteroids. Corticosteroids turn on transcription of certain genes in the nuclei of target cells. They change enzyme concentrations in the cytoplasm and affect cellular metabolism. There are two main corticosteroids: glucocorticoids such as cortisol, and mineralocorticoids such as aldosterone. These hormones target the breakdown of fat into fatty acids in the adipose tissue. The fatty acids are released into the bloodstream for other tissues to use for ATP production. The glucocorticoids primarily affect glucose metabolism by stimulating glucose synthesis. Glucocorticoids also have anti-inflammatory properties through inhibition of the immune system. For example, cortisone is used as an anti-inflammatory medication; however, it cannot be used long term as it increases susceptibility to disease due to its immune-suppressing effects. Mineralocorticoids function to regulate ion and water balance of the body. The hormone aldosterone stimulates the reabsorption of water and sodium ions in the kidney, which results in increased blood pressure and volume. Hypersecretion of glucocorticoids can cause a condition known as Cushing\u2019s disease, characterized by a shifting of fat storage areas of the body. This can cause the accumulation of adipose tissue in the face and neck, and excessive glucose in the blood. Hyposecretion of the corticosteroids can cause Addison\u2019s disease, which may result in bronzing of the skin, hypoglycemia, and low electrolyte levels in the blood.\nQuestion: The body cannot sustain for very long the bursts of energy mediated by epinephrine and norepinephrine, hormones associated with what stress response?\nAnswer:", " fight-or-flight"], ["Chelicerae are mostly used for feeding, but in spiders, these are often modified into fangs that inject venom into their prey before feeding (Figure 28.43). Members of this subphylum have an open circulatory system with a heart that pumps blood into the hemocoel. Aquatic species have gills, whereas terrestrial species have either trachea or book lungs for gaseous exchange.\nQuestion: Chelicerae in spiders are often modified into fangs that perform what function?\nAnswer:", " courtship display"], ["Chelicerae are mostly used for feeding, but in spiders, these are often modified into fangs that inject venom into their prey before feeding (Figure 28.43). Members of this subphylum have an open circulatory system with a heart that pumps blood into the hemocoel. Aquatic species have gills, whereas terrestrial species have either trachea or book lungs for gaseous exchange.\nQuestion: Chelicerae in spiders are often modified into fangs that perform what function?\nAnswer:", " chewing"], ["Chelicerae are mostly used for feeding, but in spiders, these are often modified into fangs that inject venom into their prey before feeding (Figure 28.43). Members of this subphylum have an open circulatory system with a heart that pumps blood into the hemocoel. Aquatic species have gills, whereas terrestrial species have either trachea or book lungs for gaseous exchange.\nQuestion: Chelicerae in spiders are often modified into fangs that perform what function?\nAnswer:", " tearing flesh"], ["Chelicerae are mostly used for feeding, but in spiders, these are often modified into fangs that inject venom into their prey before feeding (Figure 28.43). Members of this subphylum have an open circulatory system with a heart that pumps blood into the hemocoel. Aquatic species have gills, whereas terrestrial species have either trachea or book lungs for gaseous exchange.\nQuestion: Chelicerae in spiders are often modified into fangs that perform what function?\nAnswer:", " inject venom"], ["Vision involves sensing and focusing light from people and objects. The steps involved are as follows:.\nQuestion: What involves sensing and focusing light from people and objects?\nAnswer:", " echolocation"], ["Vision involves sensing and focusing light from people and objects. The steps involved are as follows:.\nQuestion: What involves sensing and focusing light from people and objects?\nAnswer:", " sensory perception"], ["Vision involves sensing and focusing light from people and objects. The steps involved are as follows:.\nQuestion: What involves sensing and focusing light from people and objects?\nAnswer:", " projection"], ["Vision involves sensing and focusing light from people and objects. The steps involved are as follows:.\nQuestion: What involves sensing and focusing light from people and objects?\nAnswer:", " vision"], ["Question: What is stored mainly in liver and muscle cells by humans and other vertebrates?\nAnswer:", " glucose"], ["Question: What is stored mainly in liver and muscle cells by humans and other vertebrates?\nAnswer:", " protein"], ["Question: What is stored mainly in liver and muscle cells by humans and other vertebrates?\nAnswer:", " amylopectin"], ["Question: What is stored mainly in liver and muscle cells by humans and other vertebrates?\nAnswer:", " glycogen"], ["Question: What percentage of the field is tilled in traditional plowing?\nAnswer:", " 50 %"], ["Question: What percentage of the field is tilled in traditional plowing?\nAnswer:", " 60 %"], ["Question: What percentage of the field is tilled in traditional plowing?\nAnswer:", " 75%"], ["Question: What percentage of the field is tilled in traditional plowing?\nAnswer:", " 100%"], ["The chemical elements and water that are needed by organisms continuously recycle in ecosystems. They pass through biotic and abiotic components of the biosphere. That\u2019s why their cycles are called biogeochemical cycles . For example, a chemical might move from organisms ( bio ) to the atmosphere or ocean ( geo ) and back to organisms again. Elements or water may be held for various periods of time in different parts of a cycle.\nQuestion: What type of components of the biosphere do chemical elements and water pass through during ecosystem recycle?\nAnswer:", " photic and aphotic"], ["The chemical elements and water that are needed by organisms continuously recycle in ecosystems. They pass through biotic and abiotic components of the biosphere. That\u2019s why their cycles are called biogeochemical cycles . For example, a chemical might move from organisms ( bio ) to the atmosphere or ocean ( geo ) and back to organisms again. Elements or water may be held for various periods of time in different parts of a cycle.\nQuestion: What type of components of the biosphere do chemical elements and water pass through during ecosystem recycle?\nAnswer:", " tropic and subtropic"], ["The chemical elements and water that are needed by organisms continuously recycle in ecosystems. They pass through biotic and abiotic components of the biosphere. That\u2019s why their cycles are called biogeochemical cycles . For example, a chemical might move from organisms ( bio ) to the atmosphere or ocean ( geo ) and back to organisms again. Elements or water may be held for various periods of time in different parts of a cycle.\nQuestion: What type of components of the biosphere do chemical elements and water pass through during ecosystem recycle?\nAnswer:", " water and air"], ["The chemical elements and water that are needed by organisms continuously recycle in ecosystems. They pass through biotic and abiotic components of the biosphere. That\u2019s why their cycles are called biogeochemical cycles . For example, a chemical might move from organisms ( bio ) to the atmosphere or ocean ( geo ) and back to organisms again. Elements or water may be held for various periods of time in different parts of a cycle.\nQuestion: What type of components of the biosphere do chemical elements and water pass through during ecosystem recycle?\nAnswer:", " biotic and abiotic"]]