import random import itertools import collections import torch import numpy as np import lm_eval.api import lm_eval.tasks import lm_eval.models import lm_eval.api.metrics import lm_eval.api.registry from lm_eval.utils import ( positional_deprecated, run_task_tests, make_table, create_iterator, get_git_commit_hash, ) from lm_eval.logger import eval_logger @positional_deprecated def simple_evaluate( model, model_args=None, tasks=[], num_fewshot=0, batch_size=None, device=None, no_cache=False, limit=None, bootstrap_iters=100000, check_integrity=False, decontamination_ngrams_path=None, ): """Instantiate and evaluate a model on a list of tasks. :param model: Union[str, LM] Name of model or LM object, see lm_eval.models.get_model :param model_args: Optional[str] String arguments for each model class, see LM.create_from_arg_string. Ignored if `model` argument is a LM object. :param tasks: list[Union[str, Task]] List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise. :param num_fewshot: int Number of examples in few-shot context :param batch_size: int, optional Batch size for model :param device: str, optional PyTorch device (e.g. "cpu" or "cuda:0") for running models :param no_cache: bool Whether or not to cache :param limit: int, optional Limit the number of examples per task (only use this for testing) :param bootstrap_iters: Number of iterations for bootstrap statistics :param check_integrity: bool Whether to run the relevant part of the test suite for the tasks :return Dictionary of results """ random.seed(1234) np.random.seed(1234) assert tasks != [], "No tasks specified" if isinstance(model, str): if model_args is None: model_args = "" lm = lm_eval.api.registry.get_model(model).create_from_arg_string( model_args, {"batch_size": batch_size, "device": device} ) else: assert isinstance(model, lm_eval.api.model.LM) lm = model task_dict = lm_eval.tasks.get_task_dict(tasks, num_fewshot=num_fewshot) if check_integrity: run_task_tests(task_list=tasks) results = evaluate( lm=lm, task_dict=task_dict, limit=limit, bootstrap_iters=bootstrap_iters, decontamination_ngrams_path=decontamination_ngrams_path, ) if lm.rank == 0: # add info about the model and few shot config results["config"] = { "model": model, "model_args": model_args, "num_fewshot": num_fewshot, "batch_size": batch_size, "device": device, "no_cache": no_cache, "limit": limit, "bootstrap_iters": bootstrap_iters, } results["git_hash"] = get_git_commit_hash() return results else: return None decontaminate_suffix = "_decontaminate" @positional_deprecated def evaluate( lm, task_dict, limit=None, bootstrap_iters=100000, decontamination_ngrams_path=None, ): """Instantiate and evaluate a model on a list of tasks. :param lm: obj Language Model :param task_dict: dict[str, Task] Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise. :param num_fewshot: int Number of examples in few-shot context :param limit: int, optional Limit the number of examples per task (only use this for testing) :param bootstrap_iters: Number of iterations for bootstrap statistics :return Dictionary of results """ # decontaminate = decontamination_ngrams_path is not None results = collections.defaultdict(dict) versions = collections.defaultdict(dict) requests = collections.defaultdict(list) # requests_origin = collections.defaultdict(list) # docs = {} # get lists of each type of request for task_name, task in task_dict.items(): versions[task_name] = task.VERSION # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order # task_docs = list(task_doc_func()) # rnd = random.Random() # rnd.seed(42) # rnd.shuffle(task_docs) task.build_all_requests(limit=limit, rank=lm.rank, world_size=lm.world_size) # aggregate Instances by LM method requested to get output. reqtype = ( "loglikelihood" if task.OUTPUT_TYPE == "multiple_choice" else task.OUTPUT_TYPE ) # TODO: this is hacky, fix in task.py requests[reqtype].extend(task.instances) if lm.world_size > 1: instances_rnk = torch.tensor(len(task._instances), device=lm.device) gathered_item = ( lm.accelerator.gather(instances_rnk).cpu().detach().numpy().tolist() ) # compute number of pseudobatches to pad with (FSDP/DDP require even batches among ranks) numpad = max(gathered_item) - gathered_item[lm.rank] ### Run LM on inputs, get all outputs ### # execute each type of request for reqtype, reqs in requests.items(): eval_logger.info("Running {} requests".format(reqtype)) # create `K` copies of each request `req` based off `K = req.repeats` cloned_reqs = [] for req in reqs: cloned_reqs.extend([req] * req.repeats) if (lm.world_size > 1) and (numpad > 0): for _ in range(numpad): cloned_reqs.extend([req] * req.repeats) # run requests through model resps = getattr(lm, reqtype)(cloned_reqs) # put responses from model into a list of length K for each request. for x, req in zip(resps, cloned_reqs): req.resps.append(x) if lm.world_size > 1: lm.accelerator.wait_for_everyone() ### Postprocess outputs ### # TODO: del model here, maybe (idea: allow user to specify device of e.g. reward model separately) for task_name, task in task_dict.items(): task.apply_filters() ### Collect values of metrics on all datapoints ### # TODO: make metric configurable, add metric registry vals = collections.defaultdict(list) # unpack results and sort back in order and return control to Task for task_name, task in task_dict.items(): # calculate values for each filter setup (TODO: make getting list of keys cleaner) # TODO: make it possible to use a different metric per key for key in task.instances[0].filtered_resps.keys(): doc_iterator = ( itertools.islice( enumerate(task.test_docs()), lm.rank, limit, lm.world_size ) if task.has_test_docs() else itertools.islice( enumerate(task.validation_docs()), lm.rank, limit, lm.world_size ) ) for doc_id, doc in doc_iterator: # subset instances to only this document id ; sort by idx requests = list(filter(lambda x: x.doc_id == doc_id, task.instances)) requests.sort(key=lambda x: x.idx) metrics = task.process_results( doc, [req.filtered_resps[key] for req in requests] ) for metric, value in metrics.items(): vals[(task_name, key, metric)].append(value) if lm.world_size > 1: # if multigpu, then gather data across all ranks vals_torch = collections.defaultdict(list) for (task_name, key, metric), items in vals.items(): numitem = 0 if type(items[0]) == tuple: numitem = len(items[0]) # distributed gather requires all ranks to have same dimensions # so we pad out with float32 min value pad_value = torch.finfo(torch.float32).min metrics_tensor = torch.tensor(items, device=lm.device) original_dtype = metrics_tensor.dtype # store original dtype torch_device_tensor = lm.accelerator.pad_across_processes( metrics_tensor.to(torch.float32), pad_index=pad_value ) gathered_item = lm.accelerator.gather(torch_device_tensor) if numitem > 0: gathered_filtered = gathered_item[gathered_item[:, 0] != pad_value] else: gathered_filtered = gathered_item[gathered_item != pad_value] gathered_item = ( gathered_filtered.to(original_dtype).cpu().detach().numpy().tolist() ) # reconvert if we were passed a tuple of values if numitem > 0: gathered_item = [tuple(g) for g in gathered_item] if lm.rank == 0: vals_torch[(task_name, key, metric)] = gathered_item vals = vals_torch if lm.rank == 0: ### Aggregate results over all datapoints ### # aggregate results ; run bootstrap CIs for (task_name, key, metric), items in vals.items(): task = task_dict[task_name] results[task_name][metric + " - filter=" + key] = task.aggregation()[ metric ](items) # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap # so we run them less iterations. still looking for a cleaner way to do this stderr = lm_eval.api.metrics.stderr_for_metric( metric=task.aggregation()[metric], bootstrap_iters=min(bootstrap_iters, 1000) if metric in ["bleu", "chrf", "ter"] else bootstrap_iters, ) if stderr is not None: results[task_name][metric + " - filter=" + key + "_stderr"] = stderr( items ) return {"results": dict(results), "versions": dict(versions)} else: return None