Unverified Commit fa2ae334 authored by Hailey Schoelkopf's avatar Hailey Schoelkopf Committed by GitHub
Browse files

Merge branch 'big-refactor' into bump-deps

parents 7c2687cb 54a53d6f
include: mutual.yaml
task: mutual_plus
dataset_name: mutual_plus
task: mutual
dataset_path: "EleutherAI/mutual"
dataset_name: mutual
output_type: multiple_choice
training_split: train
validation_split: validation
doc_to_text: "{{article}}"
doc_to_target: "{{['A', 'B', 'C', 'D'].index(answers)}}"
doc_to_choice: "{{options}}"
process_docs: !function utils.process_docs
process_results: !function utils.process_results
should_decontaminate: true
doc_to_decontamination_query: "{{article}}"
metric_list:
- metric: r@1
aggregation: mean
higher_is_better: true
- metric: r@2
aggregation: mean
higher_is_better: true
- metric: mrr
aggregation: mean
higher_is_better: true
import numpy as np
def process_docs(dataset):
def _detokenize(text):
text = text.replace(" '", "'")
text = text.replace(" \n", "\n")
text = text.replace("\n ", "\n")
text = text.replace(" n't", "n't")
text = text.replace("`` ", '"')
text = text.replace("''", '"')
# punctuation
text = text.replace(" :", ":")
text = text.replace(" ;", ";")
text = text.replace(" !", "!")
text = text.replace(" ?", "?")
text = text.replace(" ,", ",")
text = text.replace(" .", ".")
return text
def _process(doc):
return {
"article": _detokenize(doc["article"]),
"options": [_detokenize(option) for option in doc["options"]],
}
return dataset.map(_process)
def process_results(doc, results):
gold = ["A", "B", "C", "D"].index(doc["answers"])
r4_1 = np.argmax(results) == gold # r4_1 = accuracy
ranks = sorted(results, reverse=True)
r4_2 = (ranks.index(results[gold]) == 1) + r4_1
mrr = 1.0 / (ranks.index(results[gold]) + 1) # `+ 1` for index offset
return {"r@1": r4_1, "r@2": r4_2, "mrr": mrr}
# QASPER
### Paper
Title: `A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers`
Abstract: https://arxiv.org/abs/2105.03011
QASPER is a dataset of 5,049 questions over 1,585 Natural Language Processing papers.
Each question is written by an NLP practitioner who read only the title and abstract
of the corresponding paper, and the question seeks information present in the full
text. The questions are then answered by a separate set of NLP practitioners who also
provide supporting evidence to answers.
Homepage: https://allenai.org/data/qasper
### Citation
```
@article{DBLP:journals/corr/abs-2105-03011,
author = {Pradeep Dasigi and
Kyle Lo and
Iz Beltagy and
Arman Cohan and
Noah A. Smith and
Matt Gardner},
title = {A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers},
journal = {CoRR},
volume = {abs/2105.03011},
year = {2021},
url = {https://arxiv.org/abs/2105.03011},
eprinttype = {arXiv},
eprint = {2105.03011},
timestamp = {Fri, 14 May 2021 12:13:30 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-03011.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Groups and Tasks
#### Groups
* `qasper`: executes both `qasper_bool` and `qasper_freeform`
#### Tasks
* `qasper_bool`: Multiple choice task that evaluates the task with `answer_type="bool"`
* `qasper_freeform`: Greedy generation task that evaluates the samples from the task with `answer_type="free form answer"`
### Checklist
For adding novel benchmarks/datasets to the library:
* [ ] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
group: qasper
task: qasper_bool
dataset_path: qasper
output_type: multiple_choice
training_split: train
validation_split: validation
process_docs: !function utils.process_docs_bool
doc_to_text: "TITLE: {{title}}\nABSTRACT: {{abstract}}\n\nQ: {{question}}\n\nA:"
doc_to_target: 1
doc_to_choice: ["no", "yes"]
metric_list:
- metric: f1
group: qasper
task: qasper_freeform
dataset_path: qasper
output_type: greedy_until
training_split: train
validation_split: validation
process_docs: !function utils.process_docs_freeform
doc_to_text: "TITLE: {{title}}\nABSTRACT: {{abstract}}\n\nQ: {{question}}\n\nA:"
doc_to_target: answer
generation_kwargs:
until:
- "\n"
metric_list:
- metric: !function metrics.f1_abstractive
aggregation: mean
higher_is_better: true
import re
import string
from collections import Counter
def normalize_answer(s):
"""
Taken from the official evaluation script for v1.1 of the SQuAD dataset.
Lower text and remove punctuation, articles and extra whitespace.
"""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_abstractive(predictions, references):
"""
Taken from the official evaluation script for v1.1 of the SQuAD dataset.
"""
prediction_tokens = normalize_answer(predictions[0]).split()
references_tokens = normalize_answer(references[0]).split()
common = Counter(prediction_tokens) & Counter(references_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(references_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
from datasets import Dataset
from functools import partial
def process_docs(dataset, set_answer_type="bool"):
FEATURES = ["title", "abstract", "question", "answer", "answer_type"]
def _categorise_answer(answer_blob):
if answer_blob["unanswerable"]:
answer = "unanswerable"
answer_type = "unanswerable"
return answer, answer_type
elif answer_blob["yes_no"]:
answer = "yes"
answer_type = "bool"
return answer, answer_type
elif answer_blob["free_form_answer"]:
answer = answer_blob["free_form_answer"]
answer_type = "free form answer"
return answer, answer_type
elif answer_blob["extractive_spans"]:
answer = answer_blob["extractive_spans"]
answer_type = "extractive_spans"
return answer, answer_type
elif answer_blob["yes_no"] is False:
answer = "no"
answer_type = "bool"
return answer, answer_type
def _flatten(doc):
"""Given a `doc`, flatten it out so that each JSON blob
contains exactly one question and one answer. Logic taken from
the reference implementation available at
https://github.com/allenai/qasper-led-baseline/blob/main/scripts/evaluator.py
"""
obs_list = {
"title": [],
"abstract": [],
"question": [],
"answer": [],
"answer_type": [],
}
title = doc.pop("title")
abstract = doc.pop("abstract")
for question, answer_list in zip(doc["qas"]["question"], doc["qas"]["answers"]):
for answer_blob in answer_list["answer"]:
answer, answer_type = _categorise_answer(answer_blob)
if answer_type == set_answer_type:
obs_list["title"].append(title)
obs_list["abstract"].append(abstract)
obs_list["question"].append(question)
obs_list["answer_type"].append(answer_type)
if type(answer) == list:
answer = ", ".join(answer)
obs_list["answer"].append(answer)
return obs_list
dataset = dataset.map(
_flatten,
remove_columns=[key for key in dataset.features.keys() if key not in FEATURES],
)
new_dataset = {}
for key in dataset.features.keys():
new_dataset[key] = [x for row in dataset[key] for x in row]
return Dataset.from_dict(new_dataset)
process_docs_bool = partial(process_docs, set_answer_type="bool")
process_docs_freeform = partial(process_docs, set_answer_type="free form answer")
# Task-name
### Paper
Title: `paper title goes here`
Abstract: `link to paper PDF or arXiv abstract goes here`
`Short description of paper / benchmark goes here:`
Homepage: `homepage to the benchmark's website goes here, if applicable`
### Citation
```
BibTeX-formatted citation goes here
```
### Subtasks
List or describe tasks defined in this folder, and their names here:
* `task_name`: `1-sentence description of what this particular task does`
* `task_name2`: .....
### Checklist
For adding novel benchmarks/datasets to the library:
* [ ] Is the task an existing benchmark in the literature?
* [ ] Have you referenced the original paper that introduced the task?
* [ ] If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test?
If other tasks on this dataset are already supported:
* [ ] Is the "Main" variant of this task clearly denoted?
* [ ] Have you provided a short sentence in a README on what each new variant adds / evaluates?
* [ ] Have you noted which, if any, published evaluation setups are matched by this variant?
task: squadv2
dataset_path: squad_v2
output_type: greedy_until
training_split: train
validation_split: validation
doc_to_text: "Title: {{title}}\n\nBackground: {{context}}\n\nQuestion: {{question}}\n\n Answer:"
doc_to_target: "{% if answers.text| length > 0 %}{{answers.text}}{% else %}{{['']}}{% endif %}"
target_delimiter: ""
should_decontaminate: true
doc_to_decontamination_query: context
generation_kwargs:
until:
- "\n"
# filter_list:
# - name: remove_whitespace
# filter:
# - function: remove_whitespace
# - function: take_first
metric_list:
- metric: !function utils.exact
aggregation: mean
higher_is_better: true
- metric: !function utils.f1
aggregation: mean
higher_is_better: true
include: default.yaml
task: squadv2_noans_loglikelihood
dataset_path: squad_v2
output_type: loglikelihood
training_split: train
validation_split: validation
doc_to_target: " unanswerable"
metric_list:
- metric: perplexity
import re
import string
import collections
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
return re.sub(regex, " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s:
return []
return normalize_answer(s).split()
# Exact match (the normalized answer exactly match the gold answer)
def exact(predictions, references):
return int(normalize_answer(references[0]) == normalize_answer(predictions[0]))
# The F-score of predicted tokens versus the gold answer
def f1(predictions, references):
gold_toks = get_tokens(references[0])
pred_toks = get_tokens(predictions[0])
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
group: squadv2_complete
task:
- squadv2
- squadv2_noans_loglikelihood
......@@ -10,7 +10,7 @@ try:
except ModuleNotFoundError:
raise Exception(
"`pycountry` is required for generating translation task prompt templates. \
please install pycountry via pip install lm-eval[multilingua] or pip install -e .[multilingual]",
please install pycountry via pip install lm-eval[multilingual] or pip install -e .[multilingual]",
)
......
......@@ -16,7 +16,6 @@ import gc
import torch
import transformers
from omegaconf import OmegaConf
from jinja2 import BaseLoader, Environment, StrictUndefined
from itertools import islice
......@@ -55,8 +54,8 @@ def simple_parse_args_string(args_string):
args_string = args_string.strip()
if not args_string:
return {}
arg_list = args_string.split(",")
args_dict = OmegaConf.to_object(OmegaConf.from_dotlist(arg_list))
arg_list = [arg for arg in args_string.split(",") if arg]
args_dict = {k: v for k, v in [arg.split("=") for arg in arg_list]}
return args_dict
......@@ -395,8 +394,10 @@ def import_function(loader, node):
function_name = loader.construct_scalar(node)
yaml_path = os.path.dirname(loader.name)
module_name, function_name = function_name.split(".")
module_path = os.path.join(yaml_path, "{}.py".format(module_name))
*module_name, function_name = function_name.split(".")
if type(module_name) == list:
module_name = ".".join(module_name)
module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
spec = importlib.util.spec_from_file_location(module_name, module_path)
module = importlib.util.module_from_spec(spec)
......@@ -430,8 +431,7 @@ def load_yaml_config(yaml_path):
# If not found, assume the included yaml
# is in the same dir as the original yaml
if not os.path.isfile(path):
path = os.path.join(yaml_dir, path)
path = os.path.normpath(os.path.join(yaml_dir, path))
try:
included_yaml_config = load_yaml_config(path)
final_yaml_config.update(included_yaml_config)
......
......@@ -11,7 +11,6 @@ from lm_eval import evaluator, utils
from lm_eval.api.registry import ALL_TASKS
from lm_eval.logger import eval_logger, SPACING
from lm_eval.tasks import include_task_folder
from lm_eval.benchmarks import include_benchmarks
os.environ["TOKENIZERS_PARALLELISM"] = "false"
......
......@@ -25,10 +25,8 @@ dependencies = [
"evaluate>=0.4.0",
"jsonlines",
"numexpr",
"omegaconf>=2.2",
"peft>=0.2.0",
"pybind11>=2.6.2",
"pycountry",
"pytablewriter",
"rouge-score>=0.0.4",
"sacrebleu>=1.5.0",
......@@ -65,8 +63,8 @@ linting = [
"pre-commit",
]
testing = ["pytest", "pytest-cov", "pytest-xdist"]
multilingual = ["nagisa>=0.2.7", "jieba>=0.42.1"]
sentencepiece = ["sentencepiece>=0.1.98", "protobuf>=4.22.1", "pycountry"]
multilingual = ["nagisa>=0.2.7", "jieba>=0.42.1", "pycountry"]
sentencepiece = ["sentencepiece>=0.1.98", "protobuf>=4.22.1"]
promptsource = [
"promptsource @ git+https://github.com/bigscience-workshop/promptsource.git#egg=promptsource"
]
......
......@@ -50,7 +50,9 @@ def main():
docs = join_iters(iters)
with open(os.path.join(args.output_base_path, task_name), "w") as f:
with open(
os.path.join(args.output_base_path, task_name), "w", encoding="utf8"
) as f:
for i, doc in (
zip(range(args.num_examples), docs)
if args.num_examples > 0
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment