Commit f9cc0267 authored by Leo Gao's avatar Leo Gao
Browse files

Use hashed version stability test instead

parent 10d4b64a
[["Atomic 26 is drawn to a device, it could be", " magnetized"], ["Atomic 26 is drawn to a device, it could be", " Na"], ["Atomic 26 is drawn to a device, it could be", " compass"], ["Atomic 26 is drawn to a device, it could be", " K"], ["Two fridge decorations when touched back to back", " shove each other away"], ["Two fridge decorations when touched back to back", " are attracted to each other"], ["Two fridge decorations when touched back to back", " have very little reaction"], ["Two fridge decorations when touched back to back", " are reflective when together"], ["if the earth was a living room, what can be done to melt the glaciers?", " someone would turn up the room heater"], ["if the earth was a living room, what can be done to melt the glaciers?", " someone would turn up the air conditioner"], ["if the earth was a living room, what can be done to melt the glaciers?", " someone would turn up the music"], ["if the earth was a living room, what can be done to melt the glaciers?", " someone would turn on the light"], ["Lightning may lead to", " damage to local foliage"], ["Lightning may lead to", " rainbows across the sky"], ["Lightning may lead to", " growth of local flora"], ["Lightning may lead to", " firefighters getting the night off"], ["To improve health, what is a good strategy?", " high risk lifestyle"], ["To improve health, what is a good strategy?", " restaurant food"], ["To improve health, what is a good strategy?", " business trip"], ["To improve health, what is a good strategy?", " a spa trip"], ["After a torrential downpour over a week, a man notices that the pond in his backyard is", " melted"], ["After a torrential downpour over a week, a man notices that the pond in his backyard is", " dehydrated"], ["After a torrential downpour over a week, a man notices that the pond in his backyard is", " bloated"], ["After a torrential downpour over a week, a man notices that the pond in his backyard is", " salted"], ["what is the closest source of plasma to our planet?", " all of these"], ["what is the closest source of plasma to our planet?", " the cloud in the sky"], ["what is the closest source of plasma to our planet?", " the nearest star sulfur burning heavenly body"], ["what is the closest source of plasma to our planet?", " the bare moon surface"], ["If you wanted to make a necklace, how long would you have to wait for the materials to appear inside the Earth?", " millions of years"], ["If you wanted to make a necklace, how long would you have to wait for the materials to appear inside the Earth?", " 1 day"], ["If you wanted to make a necklace, how long would you have to wait for the materials to appear inside the Earth?", " 10 days"], ["If you wanted to make a necklace, how long would you have to wait for the materials to appear inside the Earth?", " 100 days"], ["A fallen leaf", " will turn into a tree"], ["A fallen leaf", " will become bright green"], ["A fallen leaf", " will begin to recycle the nutrients that made up its structure"], ["A fallen leaf", " is likely to continue to grow"], ["Prey are eaten by", " an animal herded by sheep dogs"], ["Prey are eaten by", " the animal with a starring role in Bambi"], ["Prey are eaten by", " animals known for their memory"], ["Prey are eaten by", " the fastest mammal with four legs"]]
\ No newline at end of file
{"results": {"openbookqa": {"acc": 0.5, "acc_stderr": 0.16666666666666666, "acc_norm": 0.5, "acc_norm_stderr": 0.16666666666666666}}, "versions": {"openbookqa": 0}}
\ No newline at end of file
{"results": {"openbookqa": {"acc": 0.214, "acc_norm": 0.276, "acc_norm_stderr": 0.020011219298073517, "acc_stderr": 0.018359797502387046}}, "versions": {"openbookqa": 0}}
\ No newline at end of file
814f9954e44368559602c00f7e85fa3971acdfd0315f508ec7df6318a79c55ec
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
{"results": {"pile_arxiv": {"word_perplexity": 1.000045287103432, "byte_perplexity": 1.0000060766745857, "bits_per_byte": 6.076656122924332e-06}}, "versions": {"pile_arxiv": 0}}
\ No newline at end of file
{"results": {"pile_arxiv": {"bits_per_byte": 1.0750412350569374e-05, "byte_perplexity": 1.0000107504701365, "word_perplexity": 1.0000819333090385}}, "versions": {"pile_arxiv": 0}}
\ No newline at end of file
5c17ddfebeab8c41dabadb6fc216ceda91e3fe5dc95aaf1b2c843d7f11828b03
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
{"results": {"pile_bookcorpus2": {"word_perplexity": 1.0000070871767668, "byte_perplexity": 1.0000012713901936, "bits_per_byte": 1.2713893854436612e-06}}, "versions": {"pile_bookcorpus2": 0}}
\ No newline at end of file
{"results": {"pile_bookcorpus2": {"bits_per_byte": 1.1631037706429144e-06, "byte_perplexity": 1.000001163104447, "word_perplexity": 1.0000066499426599}}, "versions": {"pile_bookcorpus2": 0}}
\ No newline at end of file
0f8f36f705b999b6d55fa72ff89a82793dd1cb568ab1f8727a6a2086a12b9410
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
{"results": {"pile_books3": {"word_perplexity": 1.0000030600080203, "byte_perplexity": 1.0000005276976398, "bits_per_byte": 5.276975005489457e-07}}, "versions": {"pile_books3": 0}}
\ No newline at end of file
{"results": {"pile_books3": {"bits_per_byte": 8.942486206275221e-07, "byte_perplexity": 1.0000008942490204, "word_perplexity": 1.0000052870063607}}, "versions": {"pile_books3": 0}}
\ No newline at end of file
d5b7967c0ece8b816f3921a8bd0fad23365349e935b491595e2ad1135af42da6
\ No newline at end of file
[["+ 4\nCollect the terms in -5*m - 974 + 1948 - 974.\n-5*m\nCollect the terms in 1596006*a**3 + 3 - 1596010*a**3 + 3 - 4.\n-4*a**3 + 2\nCollect the terms in 5381811 - 5381811 - 26*r**2.\n-26*r**2\nCollect the terms in -58*j**3 - 23*j - 46*j + 1970*j**3.\n1912*j**3 - 69*j\nCollect the terms in -m - 14*m - 3 - m + 5*m - 24*m.\n-35*m - 3\nCollect the terms in 3 + 3 + 1 - 7 + 3148*f.\n3148*f\nCollect the terms in -5958742222 + 5958742222 + 2*z**2.\n2*z**2\nCollect the terms in 37*h**2 - 37*h**2 - 457*h**3 + 224*h**3 + 228*h**3.\n-5*h**3\nCollect the terms in -101 - 105 + 322 + 10*z - 116.\n10*z\nCollect the terms in 1051*u - 3160*u + 1057*u + 1051*u.\n-u\nCollect the terms in -62*i**3 - 52*i**3 - 63*i**3 + 246*i**3 + i**2 - 63*i**3.\n6*i**3 + i**2\nCollect the terms in -37*a**3 - 33*a**3 + 134*a**3 - 32*a**3 - 37*a**3.\n-5*a**3\nCollect the terms in 33865*z + 2*z**2 - 33865*z.\n2*z**2\nCollect the terms in 890*y**2 + 1168*y**2 + 671*y**2.\n2729*y**2\nCollect the terms in 2*h**2 + 1219 + 1218 - 2435 - 12*h**2.\n-10*h**2 + 2\nCollect the terms in -30*k + 6*k - 9*k + 60*k.\n27*k\nCollect the terms in 15884229 - 15884229 + 3*v**2.\n3*v**2\nCollect the terms in 133*g**2 - 133*g**2 + 13664*g**3.\n13664*g**3\nCollect the terms in 285*g - 4*g**2 - 4*g**3 + 4*g**2 - 286*g + 3*g**3.\n-g**3 - g\nCollect the terms in -3113*w**3 + 6234*w**3 - 3119*w**3.\n2*w**3\nCollect the terms in -153*g - 6900*g**3 - 4477*g**3 + 153*g.\n-11377*g**3\nCollect the terms in 0*t**2 - 9*t**2 + 13*t**2 - 11*t**2 + 9*t**2 + 14*t**2.\n16*t**2\nCollect the terms in 569 + 140*t**3 - 1723 + 576 + 578.\n140*t**3\nCollect the terms in 18*n**2 + 14*n**2 + 16*n**2 - 61*n**2 + 11*n**2.\n-2*n**2\nCollect the terms in 5*s - 61*s + 5*s + 52*s.\ns\nCollect the terms in w - 8725 - 6*w**2 + 8725.\n-6*w**2 + w\nCollect the terms in 20*n**3 - 5 + 4*n - 8*n**3 + 10*n**3 + 6*n**2.\n22*n**3 + 6*n**2 + 4*n - 5\nCollect the terms in -22 - 21 + 1268*d**2 + 43.\n1268*d**2\nCollect the terms in -67 - 12*l - 2*l + 15*l + l.\n2*l - 67\nCollect the terms in 33*l**2 + 7*l**2 + 2*l + 89*l**2 - 10*l**2.\n119*l**2 + 2*l\nCollect the terms in -107*p**2 - 1699283*p + 1699283*p.\n-107*p**2\nCollect the terms in 47*z - 21 - 18 + 39.\n47*z\nCollect the terms in -423 + 423 + 2353*l.\n2353*l\nCollect the terms in 5*c**2 + 8*c**2 + 195 + 7*c**2 - 18*c**2.\n2*c**2 + 195\nCollect the terms in -29714*w + 1 - 29627*w - w**3 + 59341*w - 1.\n-w**3\nCollect the terms in -7*d**3 + 10*d - 136 + 27*d**3 + 36*d + 136.\n20*d**3 + 46*d\nCollect the terms in 7*n**2 + 2*n**2 - 18*n**2 + 8*n**2.\n-n**2\nCollect the terms in 900*w**2 + 224*w - 224*w.\n900*w**2\nCollect the terms in -9902*i**3 - 9995*i**3 + 19894*i**3.\n-3*i**3\nCollect the terms in 97912682*d**2 - 97912682*d**2 - 2*d**3 + 22.\n-2*d**3 + 22\nCollect the terms in -1494*j**3 + 7247*j**3 - 5752*j**3.\nj**3\nCollect the terms in 2*l - 7 + 6 + 1 - l.\nl\nCollect the terms in -121*v**2 - 89*v**2 + 245*v**2 - 1 + 1.\n35*v**2\nCollect the terms in -1000*x - 6 + 999*x + 3 + 1 + 2.\n-x\nCollect the terms in 22 + 32 - 838*u + 1 + 837*u + 0.\n-u + 55\nCollect the terms in -38820453 + 8*t**2 + 38820453.\n8*t**2\nCollect the terms in 12*j**3 + 33*j**3 + 2 + 15*j**3 + 2.\n60*j**3 + 4\nCollect the terms in 9 + 9853*b + 9812*b - 19667*b.\n-2*b + 9\nCollect the terms in 36 + 21 + 2*g**2 + 62 - 119.\n2*g**2\nCollect the terms in x + 91*x**2 - 217 + 217 - 20*x**3.\n-20*x**3 + 91*x**2 + x\nCollect the terms in 2164*d**2 - 1077*d**2 - 1078*d**2 + 2.\n9*d**2 + 2\nCollect the terms in -11*o**2 + 4*o**2 + 64*o**3 - 29*o**3 + 7*o**2.\n35*o**3\nCollect the terms in 493*s - 12 + 12.\n493*s\nCollect the terms in 352*w**2 - 218*w + 130*w**2 + 220*w.\n482*w**2 + 2*w\nCollect the terms in 0*l**2 + 21*l**2 - 7*l**2 + 5*l**2.\n19*l**2\nCollect the terms in -1449*d**3 - 433*d**2 + 433*d**2.\n-1449*d**3\nCollect the terms in 13*q + 16*q + 11*q - 10*q**2 - 49*q + 14*q.\n-10*q**2 + 5*q\nCollect the terms in 31*y - 49*y + 22*y - 7.\n4*y - 7\nCollect the terms in 5 + 1 + 1214*f + 463*f + 1.\n1677*f + 7\nCollect the terms in -24*n**2 - 47*n**2 + 22*n**2.\n-49*n**2\nCollect the terms in 2323465 - 2323465 - 2*t**2.\n-2*t**2\nCollect the terms in -2 - 5 + 7 - 1647*v**2.\n-1647*v**2\nCollect the terms in 2*r + 15*r - 13*r + 17*r + r**3.\nr**3 + 21*r\nCollect the terms in 582*o**2 - 306*o**2 + 654*o**2.\n930*o**2\nCollect the terms in -66 - 668*j**2 + 682*j**2 + 66.\n14*j**2\nCollect the terms in 899*g**3 + 0*g + 0*g - 3*g.\n899*g**3 - 3*g\nCollect the terms in -22552*d + 11280*d + 11278*d - 46.\n6*d - 46\nCollect the terms in 100*t**3 - 193*t**3 + 97*t**3.\n4*t**3\nCollect the terms in -8*q**2 + 7*q**2 + 18*q**2 + 9*q**2 - 8*q**2.\n18*q**2\nCollect the terms in -65 + 97*s + 91*s - 281*s + 95*s.\n2*s - 65\nCollect the terms in -144*n**2 + 236*n**2 - 96*n**2.\n-4*n**2\nCollect the terms in 7 - 5 + 36*h - 177*h - 2.\n-141*h\nCollect the terms in 15 - m**2 - 23434*m + 23434*m - 15.\n-m**2\nCollect the terms in 56 + 5*o**3 + 54 - o**2 - 3*o**3 + 47.\n2*o**3 - o**2 + 157\nCollect the terms in 0*n + 1518*n**2 - 4889 + 0*n + 4889.\n1518*n**2\nCollect the terms in 1042*p + 3*p**3 - 5*p**3 - 1042*p + 6*p**3.\n4*p**3\nCollect the terms in 11*a**2 - 253*a - a**2 + 253*a.\n10*a**2\nCollect the terms in -4*x**2 + 2*x**2 - 4*x**2 + 7*x**2 - 2*x**2.\n-x**2\nCollect the terms in -8*r**2 - 4*r**2 - 2*r**3 + 2*r**3 + 6*r**2 + r**3.\nr**3 - 6*r**2\nCollect the terms in 98*a**2 + 1 + 0*a - 3*a + 2*a - a.\n98*a**2 - 2*a + 1\nCollect the terms in -258*t**2 + 220*t**2 - t + t.\n-38*t**2\nCollect the terms in 251*d**2 + 7 + 220*d**2 - 93*d**2.\n378*d**2 + 7\nCollect the terms in 0*f + 5*f - 44*f**2 + 73*f**2 - 6*f.\n29*f**2 - f\nCollect the terms in -44508*j**2 - 7175*j**2 + 6225*j**2.\n-45458*j**2\nCollect the terms in -1096 - 5*y - 5*y + 4*y + 1096.\n-6*y\nCollect the terms in -152*h + 3*h**3 - 20*h - h**3 - 145*h + 317*h.\n2*h**3\nCollect the terms in -39*t - 203*t + 27*t.\n-215*t\nCollect the terms in 61082035 - 61082035 - 6*f.\n-6*f\nCollect the terms in -583*y - 357*y + 88*y - 170*y.\n-1022*y\nCollect the terms in -5 - 11*v - 5 + 2*v - 7.\n-9*v - 17\nCollect the terms in -230*m + 20 - 56 + 233*m.\n3*m - 36\nCollect the terms in 3010*z**3 + 3803*z**3 - 7557*z**3.\n-744*z**3\nCollect the terms in 359 - 138 - 83 + 4*u - 138.\n4*u\nCollect the terms in 214*v**2 - 403*v**2 + 180*v**2.\n-9*v**2\nCollect the terms in 41*x + 3 - 3 + 23*x + 32*x.\n96*x\nCollect the terms in 2 - 11*n + n**2 + 15*n + 14*n.\nn**2 + 18*n + 2\nCollect the terms in -75*y**2 + 40*y**2 + 5*y**2 + 28*y**2.\n-2*y**2\nCollect the terms in 6*b**2 + 5*b**2 - 61*b**2 + 57*b**2.\n7*b**2\nCollect the terms in -t - 45 + 3*t + 55 - 3.\n2*t + 7\nCollect the terms in 54*m**2 + 72*m**2 - 119*m**2.\n7*m**2\nCollect the terms in -5*n**3 - 1 - n**2 + 5 - 51*n**3 - 4.\n-56*n**3 - n**2\nCollect the terms in -2324108384 + 2324108384 - 2*b**2.\n-2*b**2\nCollect the terms in -6121*s - 6091*s + 12215*s.\n3*s\nCollect the terms in -y**3 + 10 + 2*y**3 - 33 + 23.\ny**3\nCollect the terms in 9*s**2 - 2*s**2 - 5*s**2 - 724 + 724.\n2*s**2\nCollect the terms in -68*r**2 + 131*r**2 - 66*r**2.\n-3*r**2\nCollect the terms in -42*r + 18*r**3 + 14*r**3 - 38*r**3.\n-6*r**3 - 42*r\nCollect the terms in 3858*s + 3882*s - 7749*s.\n-9*s\nCollect the terms in 12*n - 51*n + 19*n + 14*n + 5*n.\n-n\nCollect the terms in -786 - 3*b**2 - 779 + 1565 - 27*b.\n-3*b**2 - 27*b\nCollect the terms in -21 + 4 + 22 - 6*u.\n-6*u + 5\nCollect the terms in -255538231*p + 22*p**2 + 255538231*p.\n22*p**2\nCollect the terms in 308 + 1629 + 315 + 4*z - 301.\n4*z + 1951\nCollect the terms in -1778 - 1707 + 3485 - 2*l**2.\n-2*l**2\nCollect the terms in -60*c**2 + 89*c**2 - 10*c**2 + 70*c**2.\n89*c**2\nCollect the terms in -190*m**3 + 367*m**3 + 22*m**2 - 179*m**3 - 22*m**2.\n-2*m**3\nCollect the terms in -56*v**3 - 59*v**3 - 9*v**3 + 121*v**3.\n-3*v**3\nCollect the terms in -19025163 - w**3 - 19025161 + 38050324.\n-w**3\nCollect the terms in -49*t - 43*t + 108*t - 38*t.\n-22*t\nCollect the terms in -228*w + 53*w - 3*w**3 - 436*w + 69*w.\n-3*w**3 - 542*w\nCollect the terms in 758*g**3 - 1865*g**3 + 917*g**3.\n-190*g**3\nCollect the terms in 3*a + 137*a**3 - 3*a + 363*a**3 + 0*a.\n500*a**3\nCollect the terms in 39*u**2 - 56*u + 172*u - 114*u.\n39*u**2 + 2*u\nCollect the terms in -9 + 14 - 10*z - 3 + 1.\n-10*z + 3\nCollect the terms in 843*y**3 + 4*y - 412*y**3 - 409*y**3.\n22*y**3 + 4*y\nCollect the terms in 5*n**2 + 7505 - 7505 - 2*n**2.\n3*n**2\nCollect the terms in -259*r +"], ["\n2\nLet f be (-1)/(1 + (-6)/4). Suppose -5*u = -2*n - 6, u = f*u + 5*n + 15. Solve 3*w = -u*w + 12 for w.\n4\nLet y(i) = -3*i + 21. Let z be y(6). Solve 2*m + z = -5 for m.\n-4\nLet g(n) = -n**3 + 5*n**2 - 4*n - 1. Let y be g(3). Suppose 0 = 51*v - 48*v - 45. Solve -2*c + y*c = -v for c.\n-5\nLet s be (-1 - -3) + (0 - 1). Let n(c) = 3*c**2 + 2*c - 1. Let u be n(s). Solve -u*k + 8 = -12 for k.\n5\nLet d be ((-8)/20)/(2/(-10)). Solve 0*h = h - d for h.\n2\nLet k be (-3*3/(-9))/1. Let f be 2/k*(-9)/(-2). Let x = 11 - f. Solve 0 = d + x*d for d.\n0\nLet n(w) = -w**2 - 5*w - 2. Let s be n(-2). Suppose 0 = -5*m + 5. Let y be (m/(-3))/((-2)/6). Solve s = 5*u - y for u.\n1\nLet a be -3 - (-2 - -1) - -2. Solve a = -3*z + 3 + 9 for z.\n4\nLet i be 2/1*-16 - -2. Let y = i - -10. Let w = y + 40. Solve 3*z - w = -5 for z.\n5\nSuppose 4*n = 4*j - 58 - 6, 4*n + 104 = -4*j. Let o be 1/(-3) + 1008/27. Let h = n + o. Solve -2*u - h = 2*u for u.\n-4\nLet u(l) = -l**2 + 6*l - 7. Let j be u(5). Let p(o) = -o. Let a be p(j). Suppose -a*g = 2*g - 16. Solve -g*f + 0 = -4 for f.\n1\nSuppose s + 4 = 3*s - 5*q, -3*s = 5*q - 6. Solve x - s*x = -2 for x.\n2\nLet l(u) = -155*u + 1. Let f be l(-1). Suppose 3*t + f = 3*k + k, k - 2*t - 34 = 0. Let x be k/(-4)*10/(-15). Solve 2*s + 20 = x*s for s.\n4\nSuppose 0 = -5*z + 13 + 12. Suppose -d + z*w + 15 = 0, 0 = 3*d + 2*w + 1 + 5. Let a be 0 + (-2)/((-12)/18). Solve a*x = -d + 3 for x.\n1\nLet z = 13 + -13. Solve 0*c - 2*c - 8 = z for c.\n-4\nSuppose 5 = n + 3*v, -3*v = 4*n + 2*v - 13. Solve n*p - 5 = 3 for p.\n4\nLet z(u) = u - 6. Let i be z(8). Suppose -4*c = 2*o - 10, -i*o - 5*c = -3 - 9. Let g be 4 - (1 - 2)/o. Solve 4*p - g = 3*p for p.\n5\nLet w be (2 + -5)*(3 - 2). Let y = -1 - w. Solve y*t = 5*t - 15 for t.\n5\nLet o(x) = x**3 - 3*x**2 - 12*x + 10. Let b be o(5). Suppose 20 = 2*v - 0*v. Solve b = -5*w - 0*w - v for w.\n-2\nLet h be (-132)/(-28) + 2/7. Let r be ((-12)/8)/((-6)/20). Let k = r + -3. Solve -h*v = -7*v - k for v.\n-1\nSuppose -3*z + z + k = -5, -3*z - 2*k = 3. Suppose 5*g - 2*g = -x, z = -4*g - x. Let a be (3*2)/((-2)/g). Solve t + 1 = -a for t.\n-4\nLet j be (0/(2/(-1)))/(-2). Suppose j = -k + 4. Solve i + i = -k for i.\n-2\nLet v(r) = 3*r - 17. Let b(i) = 2*i - 9. Let c(g) = -5*b(g) + 3*v(g). Let u be c(-4). Let w be 10 + (12/3)/u. Solve d = -3*d - w for d.\n-2\nLet g be 24/14 - (-4)/14. Suppose 2*v - 5*c - 25 = 0, -5*v + g*c + 0*c = -31. Suppose -2*n + 6*n + 3*d = 36, -5*n + 80 = -v*d. Solve n = 4*h - 0*h for h.\n3\nLet x(z) = -z**2 + 6*z - 5. Let h = 15 - 11. Let m be x(h). Solve 0 = d + 2*d - m for d.\n1\nLet y(i) = -2*i + 4. Let z be y(-4). Solve v + z = 4*v for v.\n4\nLet o(h) = h**3 + 3*h**2 - 4*h. Let t be o(-4). Solve -4*i = -t*i + 4 for i.\n-1\nSuppose 0*a - a + 6 = 0. Suppose c - 40 = a*c. Let n = c + 16. Solve -q - q = n for q.\n-4\nLet j be (-1)/(-1)*385/11. Suppose 0*p - 14 = -3*f - p, -4*f + 6 = -5*p. Suppose f*t + 3 = j. Solve 5*b + 2 = -t for b.\n-2\nLet k(s) = -7*s + 33. Let z(w) = 3*w - 16. Let l(g) = -4*k(g) - 9*z(g). Let q be l(0). Solve q = 2*b + 2*b for b.\n3\nLet n(l) = -2*l**3 - 2*l**2 - 4*l - 1. Let i(u) = -5*u**3 - 4*u**2 - 9*u - 3. Let m(x) = 3*i(x) - 7*n(x). Let q be m(2). Solve q*g - g - 1 = 0 for g.\n-1\nLet w(q) = -q + 2. Let s be w(4). Let p(g) = 2*g**2 + 5*g + 5. Let y be p(s). Solve -2*n = -3*n + y for n.\n3\nLet i = -8 + 4. Let p(s) = 5*s + 2*s**3 + 6 - 4*s**3 - 3*s**2 + s**3. Let t be p(i). Solve 2*m + t*m = -8 for m.\n-2\nLet r = 53 + -51. Solve 1 = -r*u - 1 for u.\n-1\nLet x(n) = 6*n - 2. Let t be x(1). Solve -h + t = 3 for h.\n1\nSuppose -4 = 2*z, 3*s - z - 14 + 3 = 0. Suppose -s*r + 22 = 4*l, -r + 4*l + 4 = -14. Solve n - r = 3*n for n.\n-5\nSuppose -5*g = s - 115, 5*s + 0*g - 595 = -5*g. Suppose s = 3*v + 45. Suppose 3*n = -4*t - n + 32, 2*t = -5*n + v. Solve -2*p + t*p = 12 for p.\n4\nSuppose q - 5*f = -3*f + 5, -4*q + 5*f = -17. Solve q*y - 15 = -2*y for y.\n3\nLet c(d) = -2*d - 48. Let m be c(-24). Solve m = -4*o - o - 5 for o.\n-1\nLet f(n) be the second derivative of n**4/12 - 5*n**3/6 - n**2 + n. Let a be f(5). Let v = a - -6. Solve 0*c = -v*c for c.\n0\nSuppose -3*d - 18 = -12*d. Solve -3*u - 20 = d*u for u.\n-4\nLet l = -80 - -87. Solve -g + l = 9 for g.\n-2\nLet a be -10*(-2 - 1/2). Let d = 17 - 13. Solve -a = j + d*j for j.\n-5\nLet x be (-3)/6 - 2/(-4). Suppose 5*o + f - 10 - 3 = x, 3*f - 9 = 0. Let t be o - (3/3 + -1). Solve -t = -3*z + 5*z for z.\n-1\nSuppose 5 = -4*t - 5*w + 15, -2*t + 4*w = 8. Suppose t = -3*q - q + 32. Solve q = -3*y + 17 for y.\n3\nSuppose -5*z = 2*i - 23, 2*z - 22 = -0*z - 4*i. Solve z*f = -0*f for f.\n0\nLet j be 4/10 + 81/(-15). Let a = 8 + j. Suppose -5*t = d + 8, 2 + 8 = 2*d - 3*t. Solve d*g + a*g = 0 for g.\n0\nLet n(u) = -u**2 + 5*u - 6. Let g be n(4). Let j(q) = -2*q. Let k be j(g). Solve -2 = c - k for c.\n2\nLet v = 6 + -4. Let x be 16/6 - 1/(-3). Suppose -x*w = v*w - 20. Solve -w = -2*h + 6*h for h.\n-1\nLet b(s) = 14*s**2 - 4*s**2 - s**3 - 3*s + 4*s - 5 - 2. Let u be b(10). Solve -17 = -4*j + u for j.\n5\nSuppose 30 = 2*g + g. Let y(c) = -c**3 + 10*c**2 + c - 5. Let x be y(g). Solve 0 = -m + 2*m - x for m.\n5\nSuppose -4*b = 2*r - 6, 3*b - 3*r - 1 = -b. Solve -z = -1 - b for z.\n2\nLet d be 0 + 1 + -1 + 1. Let j = 3 - d. Suppose -m + 4 = -2*r + j, 0 = -5*m - 4*r + 24. Solve 0 = 2*b + m for b.\n-2\nLet x(c) = c - 16. Suppose -22 - 14 = -2*i - 4*b, -5*b = 0. Let s be x(i). Let m = 1 + -1. Solve u + s + 0 = m for u.\n-2\nLet f = -7 + 11. Suppose 0*m = -f*y - 3*m + 24, m = 3*y - 5. Suppose 0 = -5*c - 20, 3*j - y*c - 12 = -2*j. Solve j = 3*t - 5 - 4 for t.\n3\nLet h = 3 + -1. Let m be 2 - 1/(h/(-2)). Solve m = a + 2*a for a.\n1\nSuppose -4*i + 48 = -2*i. Let u(v) = -3*v**3 - v**2 - v - 1. Let y be u(-1). Suppose 0 = y*b + 2*b - i. Solve -c + b*c + 5 = 0 for c.\n-1\nLet c(v) = -v - 2. Let t be c(-3). Let r = t - -1. Solve 2*a + r = -8 for a.\n-5\nSuppose -5*j = -10 - 5. Suppose 5 - 2 = -3*r. Let t = j + r. Solve -t*w = 2*w - 12 for w.\n3\nLet o be (-2)/(-1) - (-1)/1. Let t = 7 - o. Let k be 0 + 1 - (t - 5). Solve -2*b = k*b - 4 for b.\n1\nSuppose -4*g - 1 - 3 = 0. Let f be (3 - -19)*g/(-2). Solve -36 = -5*d - f for d.\n5\nLet y be ((-54)/(-63))/(2/7). Suppose 0 = -4*g - g. Solve y*f - 4 - 11 = g for f.\n5\nLet g(b) = 6*b**2 + 3*b + 8. Let r(s) = 7*s**2 + 2*s + 9. Let m(y) = -6*g(y) + 5*r(y). Let w be m(-5). Solve 0*h + w = -3*h for h.\n-4\nLet y be ((-3)/(-4))/((-10)/(-80)). Solve 1 = -5*o + y for o.\n1\nSuppose -3*r + 3*p - 5 = 1, -6 = -3*p. Suppose 0 = 14*u - 19*u. Let n be u/(3*(-2 - -1)). Solve -h - 4 + n = r for h.\n-4\nLet l be (-15)/(-6)*-9*-2. Suppose -l = -6*h + h. Solve 0 = -3*o + 6*o + h for o.\n-3\nLet s be 2/(-6) - (-28)/12. Suppose 6*f = s*f + 12. Solve f = -4*x + x for x.\n-1\nLet j be 22/10 - (-1)/15*-3. Solve 2 = -j*y - 2 for y.\n-2\nLet k be 0 + -2*13/(-2). Suppose 2*y = -3*w - 3*y + k, w - 7 = y. Suppose 0*o - o = 2*b - 44, -3*b + 5*o = -40. Solve 0 = q - w*q + b for q.\n4\nSuppose -g = -3*r + 26, -2*g = -r + 21 - 9. Solve -t = 4 - r for t.\n4\nLet k(d) = d**2 + 7*d - 8. Let q(t) = t**3 + 7*t**2 - 8. Let l be q(-7). Let o be k(l). Let a = o + 2. Solve -a*f = -0*f for f.\n0\nLet r = 83 + -83. Solve r = -4*j + 3*j - 1 for j.\n-1\nLet n = -10 + 15. Suppose -2*i + n*i = 6. Solve i*f + f = 3 for f.\n1\nLet i be 4*(60/(-8))/(-5). Suppose -3*o - 10 = -5*g, 4*o - i - 34 = -4*g. Solve o*u - 1 = -21 for u.\n-4\nSuppose 0 = 5*j - j. Suppose j = 2*r + 4*q, 3*r - q = -2*q. Solve -4 = 2*i - r for i.\n-2\nLet c(k) be the first derivative of k**3/3 + 3*k**2 + 6*k + 4. Let m be c(-5). Solve 9 - m = -4*p for p.\n-2\nSuppose 2*h + 45 = -7. Let i = -20 - h. Solve -l = l + i for l.\n-3\nLet o(h) = -2*h. Let n be o(-1). Solve -4*i = -n*i - 2 for i.\n1\nSuppose 16 = -4*j + 4, -4*c = -2*j - 18. Suppose -5*h + 14 = 2*k - 3*h, 0 = -k + 4*h - c. Solve -14 + k = -3*o for o.\n3\nLet q(t) = -t**3 - 4*t**2 - t + 1. Let d be q(-4). Solve d*b = 3*b for b.\n0\nSuppose -3*q = 3*n + 3, 2*n - 1 + 3 = 2*q. Solve 3*c - c = q for c.\n0\nSuppose -4*f - 48 = -4*x, 3*x - 31 = -0*x - 2*f. Let g be 18*5/(-10)*-1. Solve 5*k = -x - g for k.\n-4\nSuppose -2*o + 6*o - 8 = 0. Let v(j) = j - o*j**3 - 4 - 5*j**2 + 5*j**3 - 2*j**3. Let b be v(5). Solve -b = -p + 1 for p.\n2\nLet s be 21/5 + 3/(-15). Solve 0 = s*o + 25 - 9 for o.\n-4\nLet a(n) = -n**2 + 8*n + 9. Let z be a(8). Solve 2*c = -c + z for c.\n3\nLet f(o) be the se"], ["p(b) be the first derivative of -1/3*b**s - 1/2*b**2 + 2*b - 9. Factor p(z).\n-(z - 1)*(z + 2)\nLet s(n) be the second derivative of n**5/100 - n**4/30 - 2*n**3/15 + 4*n**2/5 - 7*n - 3. Suppose s(w) = 0. What is w?\n-2, 2\nSuppose 0 = -2*o - l - 1, l = -5. Let y = 3/3778 + 18869/26446. Determine s so that -y*s**o - 2/7*s + 3/7 = 0.\n-1, 3/5\nLet r = 45095/7 + -6433. Factor 0*o + r*o**2 + 96/7*o**3 + 36/7*o**4 + 0.\n4*o**2*(3*o + 4)**2/7\nLet d = 3 - -1. Let x(k) = -k**2 + 28*k + 32. Let m be x(29). Suppose u**m + 1 + 3 - d - u**2 = 0. What is u?\n0, 1\nLet a(d) be the third derivative of d**6/72 - 4*d**5/9 + 65*d**4/72 + 25*d**3/3 - d**2 + 14. Factor a(u).\n5*(u - 15)*(u - 2)*(u + 1)/3\nLet h(b) be the first derivative of -4*b**5/5 - 23*b**4 - 172*b**3/3 - 42*b**2 + 42. What is c in h(c) = 0?\n-21, -1, 0\nLet o(j) = j**2 + 20*j - 49. Let z(h) = -h**2 - 41*h + 97. Let f(t) = 7*o(t) + 4*z(t). Factor f(q).\n3*(q - 5)*(q - 3)\nLet x be (-51)/(-180) - (45/9)/20. Let j(d) be the second derivative of -3*d + 0*d**2 - x*d**4 + 0 + 0*d**3. Factor j(t).\n-2*t**2/5\nLet c(k) be the first derivative of k**6/180 - 2*k**5/45 + 5*k**4/36 - 2*k**3/9 + 13*k**2/2 - 12. Let j(f) be the second derivative of c(f). Factor j(p).\n2*(p - 2)*(p - 1)**2/3\nFactor 81 + 1/4*d**2 - 9*d.\n(d - 18)**2/4\nLet i(c) = 2*c + 2. Let p be i(1). Suppose 0 = -p*q - t + 12, 3*q - t + 1 = 3. Factor -10/9*w**q - 8/9*w + 8/9 + 2/3*w**3.\n2*(w - 2)*(w + 1)*(3*w - 2)/9\nLet f(q) = -8*q**2 - 4*q + 10. Let d(u) = 8*u - 1 - u**3 + 2 - 9*u. Let k(s) = 2*d(s) - f(s). Factor k(c).\n-2*(c - 4)*(c - 1)*(c + 1)\nLet x(s) = 63*s - 1071. Let c be x(17). Factor -2/7*h**4 + 2/7*h**2 + c + 0*h**3 + 0*h.\n-2*h**2*(h - 1)*(h + 1)/7\nSuppose 4*g - 3*p + 2*p + 219 = 0, -4*p + 148 = -3*g. Let t = -56 - g. Let -1/3*i**2 - 1/3*i**4 + 0*i + t - 2/3*i**3 = 0. What is i?\n-1, 0\nLet p(u) be the third derivative of -u**5/300 - 7*u**4/120 - u**3/5 - 30*u**2 - 6. Factor p(v).\n-(v + 1)*(v + 6)/5\nLet d(c) = c**3 - 6*c**2 - 5*c + 1. Let y be d(7). Suppose t + 4*t = y. Factor -g**2 - g - g**3 + 5*g**t - 5*g**3 - g**2.\n-g*(g + 1)**2\nLet z(q) = -q**3 - 7*q**2 - 7*q - 4. Suppose -3*m = -2*c - 24, -c + 2*c + 5*m = 14. Let p be z(c). Factor p*x + 2*x + x**5 - 8*x**3 - x**5 + 4*x**5.\n4*x*(x - 1)**2*(x + 1)**2\nSuppose -4*t - 64 = -364. Let a = -73 + t. Determine z so that -5/3*z**3 + 1/3*z**a + 2/3 - z**4 + 5/3*z = 0.\n-1, -2/3, 1\nLet j = -64 - -67. Suppose m - m = j*m. Factor -2/9*o**3 - 2/9*o - 4/9*o**2 + m.\n-2*o*(o + 1)**2/9\nLet s(b) be the first derivative of b**3/7 - 9*b**2/14 - 30*b/7 - 173. Suppose s(u) = 0. What is u?\n-2, 5\nLet f(l) = -l**2 - 3*l + 2. Let x be f(-2). Let d be 22/2 + (-5)/(80/24). Factor x*r - 2 + 7/2*r**3 + d*r**2.\n(r + 1)*(r + 2)*(7*r - 2)/2\nLet o(c) be the first derivative of -c**6/21 + 2*c**5/35 + 62. Factor o(z).\n-2*z**4*(z - 1)/7\nLet l(g) be the third derivative of -11*g**6/160 + 27*g**5/20 - 255*g**4/32 - 25*g**3/4 + 112*g**2. Let l(w) = 0. Calculate w.\n-2/11, 5\nLet p be (-10)/50 - (-2)/10. Let m(r) be the second derivative of -9*r - 1/12*r**4 - 1/6*r**3 + 1/20*r**5 + 1/30*r**6 + 0 + p*r**2. Let m(t) = 0. What is t?\n-1, 0, 1\nLet r(c) = c**3 - 6*c**2 - c + 6. Let y be r(6). Suppose -5*g + 22 = -2*w, -100*g + 3*w - 1 = -101*g. Factor 4/7*m**5 + 0 + 0*m - 2/7*m**2 + 6/7*m**g + y*m**3.\n2*m**2*(m + 1)**2*(2*m - 1)/7\nLet j(c) = -c**3 - 5*c**2 - 5*c - 6. Let p be j(-4). Let a be (1 - p) + (-2 - -1). Suppose 18*r + 23 + 16 - 43 - 14*r**a = 0. What is r?\n2/7, 1\nLet c(n) = -24*n**2 - 5*n - 9. Let q(x) = -5*x**2 - x. Let t(y) = c(y) - 5*q(y). Find w, given that t(w) = 0.\n-3, 3\nLet u(y) be the third derivative of -y**9/9072 + y**7/2520 - 17*y**3/6 - 19*y**2. Let n(l) be the first derivative of u(l). Determine g so that n(g) = 0.\n-1, 0, 1\nLet b(h) = h**2 - 11*h + 27. Let o be b(8). Factor 40*a**3 - o*a**5 - 27*a**4 + 50*a**3 - 27 + 99*a - 138*a**2 + 6*a**5.\n3*(a - 3)**2*(a - 1)**3\nLet n = -2/4931 + 39458/24655. Let 8/15*a - 2/15*a**2 + n = 0. Calculate a.\n-2, 6\nLet a(g) = g. Let y(k) = 6*k + 3. Let v(o) = -5*a(o) + y(o). Let u be v(-1). Factor 0 + 3/2*m**u - 3/2*m**3 + 0*m.\n-3*m**2*(m - 1)/2\nLet z(d) be the second derivative of 0*d**2 + 0 + 0*d**3 + 1/30*d**5 - d + 0*d**4 + 1/45*d**6. Factor z(f).\n2*f**3*(f + 1)/3\nLet n(i) = -2 - i**3 - 1 - i**2 + i**4 + 11 - 9. Let u(m) = 2*m**5 + 6*m**4 - 2*m**3 - 6*m**2 - 2*m - 2. Let d(z) = -2*n(z) + u(z). Factor d(r).\n2*r*(r - 1)*(r + 1)**3\nLet u be 6/2 + (-8 + 24/3)/2. Factor 4/9*s**4 + 0*s + 2/9*s**2 + 0 + 2/3*s**u.\n2*s**2*(s + 1)*(2*s + 1)/9\nLet w = -2/243 + 164/243. Let d(k) be the first derivative of -1/2*k**2 + w*k**3 - 2 + 0*k - 1/4*k**4. Factor d(z).\n-z*(z - 1)**2\nLet c be (70/(-126)*3)/((-7)/(63/30)). Determine j, given that -5/8*j**2 + 3/8*j + 1/8 - 3/8*j**3 + c*j**4 = 0.\n-1, -1/4, 1\nLet z be (-12 - -8) + 33/7. Let n = z + -3/14. Factor n - b - 1/2*b**4 + b**3 + 0*b**2.\n-(b - 1)**3*(b + 1)/2\nLet z = 596 + -594. Let f(k) be the first derivative of 3/2*k**z + 3*k - 3/4*k**4 - k**3 - 6. Factor f(t).\n-3*(t - 1)*(t + 1)**2\nLet d(x) be the second derivative of -9*x**7/7 + 18*x**6/5 + 27*x**5/10 - 29*x**4/3 + 4*x**3/3 + 8*x**2 - 3*x + 75. Solve d(r) = 0.\n-1, -1/3, 2/3, 2\nWhat is j in 2/5*j**5 + 8/5*j**2 + 0*j + 18/5*j**3 + 0 + 12/5*j**4 = 0?\n-4, -1, 0\nLet i(q) = 27*q**2 + 84*q + 105. Let g(r) = 7*r**2 + 21*r + 26. Let p(b) = -15*g(b) + 4*i(b). Find n, given that p(n) = 0.\n-5, -2\nLet z(a) be the third derivative of 1/80*a**6 + 0*a - 1/64*a**4 + 0 + 14*a**2 - 3/160*a**5 + 0*a**3. Factor z(v).\n3*v*(v - 1)*(4*v + 1)/8\nLet k = 66 - 72. Let u be k*3/(-9)*(-9)/(-6). Suppose 0*r**2 - 3/4*r**4 - 3/4*r**u + 0 + 0*r = 0. Calculate r.\n-1, 0\nLet b be (-3)/2*(-108)/(-81). Let a be (-3)/(-2 - -5)*b. Let 1/4*l**a - 1/2 - 1/4*l = 0. What is l?\n-1, 2\nLet w(k) = 4*k**3 - 2*k**2 + 2*k + 2. Let b(v) = -12*v**3 + 6*v**2 - 7*v - 7. Let o = -13 - -6. Let c(f) = o*w(f) - 2*b(f). Factor c(x).\n-2*x**2*(2*x - 1)\nLet y(h) be the third derivative of -h**7/630 + h**6/360 + h**5/60 - h**4/72 - h**3/9 + 52*h**2. Let y(k) = 0. Calculate k.\n-1, 1, 2\nLet a(p) be the first derivative of 0*p + 0*p**4 - 11 + 1/5*p**5 + 1/12*p**6 - 1/4*p**2 - 1/3*p**3. Determine l, given that a(l) = 0.\n-1, 0, 1\nSuppose 7*z - 2*z = 3*m - 1460, 0 = -4*m - 5*z + 1900. Let l be 144/m*4/3*2. Determine p, given that 2/5*p - l*p**2 + 2/5*p**3 + 0 = 0.\n0, 1\nLet 321*y**2 + 30*y - 54*y - 11*y**2 + 43*y + 75*y**3 + 21*y = 0. Calculate y.\n-4, -2/15, 0\nSuppose 6*f = -12*f - 1530. Let g = 87 + f. Factor 1 - 4/3*i**g + 1/3*i.\n-(i - 1)*(4*i + 3)/3\nLet k(f) be the second derivative of f**8/1680 - f**6/200 - f**5/150 + 21*f**2/2 + 19*f. Let y(n) be the first derivative of k(n). Find l such that y(l) = 0.\n-1, 0, 2\nSuppose -8*u = 158 - 246. Let o(h) be the second derivative of -1/5*h**5 + 0*h**4 + 0 + 1/5*h**6 + 2/21*h**7 + 0*h**3 + 0*h**2 + u*h. Factor o(f).\n2*f**3*(f + 2)*(2*f - 1)\nLet 40*p**4 - 111 - 4*p**5 + 214 - 40*p**2 + 64*p - 60*p**3 - 103 = 0. Calculate p.\n-1, 0, 1, 2, 8\nLet g(l) be the second derivative of 5*l**7/84 - l**6/4 + l**5/4 + 5*l**4/12 - 5*l**3/4 + 5*l**2/4 - l - 11. Factor g(z).\n5*(z - 1)**4*(z + 1)/2\nFactor -1/2*v**3 + 0*v + 47/2*v**2 + 0.\n-v**2*(v - 47)/2\nSuppose -m - u = -8, -m - 12 = m - 5*u. Factor m*q**2 - 3*q**2 + q**3 + 21*q - 23*q.\nq*(q - 1)*(q + 2)\nLet z be 34/527 - 4/62. Suppose -2/9*t**2 + z*t + 2/9 = 0. What is t?\n-1, 1\nSuppose -2*s - 40*s = -63 - 21. Factor 0 + 0*p + 1/2*p**5 + 3/2*p**s - 1/2*p**3 - 3/2*p**4.\np**2*(p - 3)*(p - 1)*(p + 1)/2\nLet h(b) be the third derivative of -b**7/210 + b**6/90 + b**5/30 - b**4/6 + 8*b**3/3 + 13*b**2. Let t(j) be the first derivative of h(j). Factor t(z).\n-4*(z - 1)**2*(z + 1)\nLet g(v) be the first derivative of -v**4/18 - 10*v**3/27 + v**2 + 10*v - 436. Factor g(u).\n-2*(u - 3)*(u + 3)*(u + 5)/9\nLet z(f) be the first derivative of -5*f**3/3 + 115*f**2 - 225*f - 53. Factor z(a).\n-5*(a - 45)*(a - 1)\nSuppose 2*v - 4*v = 48. Let p = -19 - v. Determine y, given that -8*y**2 + 6*y**2 - 11 + 3 - 13*y + p*y = 0.\n-2\nFactor 0 - 2/9*n**2 - 80/9*n.\n-2*n*(n + 40)/9\nLet s(u) = 57*u**3 - 74*u**2 + 25*u + 1. Let h(n) = -112*n**3 + 148*n**2 - 50*n - 1. Let p(m) = 3*h(m) + 5*s(m). Factor p(c).\n-(c - 1)*(3*c - 1)*(17*c - 2)\nSuppose -j + 7 = -3*b - b, 0 = -2*j - 2*b + 4. Factor 8*o**2 - 34*o**3 - o**4 - j*o**4 + 30*o**"], ["mainder when d is divided by 6?\n3\nLet d = -7088 - -7633. What is the remainder when d is divided by 15?\n5\nSuppose 137203 + 27497 = 85*d + 32440. Calculate the remainder when d is divided by 19.\n17\nSuppose 0 = -5*i + p + 6381 - 1759, 0 = -4*i + 3*p + 3713. Calculate the remainder when i is divided by 14.\n13\nLet c = 16996 - 16703. What is the remainder when c is divided by 7?\n6\nLet a = -547 + 768. Let x = a - 198. Let b = 28 - -109. What is the remainder when b is divided by x?\n22\nLet r be 1 - (3/6)/(2/(-4)). Let f be 0 - 2*9/r. What is the remainder when (3 - f/(-6))*140/6 is divided by 19?\n16\nLet o(a) = -1189*a - 861. Calculate the remainder when o(-2) is divided by 80.\n77\nCalculate the remainder when 834 is divided by (-144)/(-7) + 110/77*(-42)/(-140).\n15\nLet r(k) = 2*k**3 + 9*k**2 + 8*k + 25. Let o be r(-4). Suppose 3*u + 4*d = o*d + 475, u - 5*d = 145. What is the remainder when u is divided by 34?\n29\nLet k(z) = 37*z**2 - z + 1. Let g = -22 - -981. Let o = -946 + g. What is the remainder when k(1) is divided by o?\n11\nSuppose -5*f = 2*g - g - 404, 3*f + 2*g = 248. Suppose -86*m + f*m + 978 = 0. What is the remainder when m is divided by 85?\n78\nLet x = 149 - 159. Let p(q) = q**2 + 15*q + 28. Let g be p(x). Let n = g - -37. Calculate the remainder when 25 is divided by n.\n10\nSuppose -112*n - 112*n = -36*n - 998280. What is the remainder when n is divided by 4?\n2\nSuppose -11*c + 51 = -10*c. Suppose -c*r = -63*r + 144. Calculate the remainder when 323 is divided by r.\n11\nSuppose 171*y - 5*l - 1413 = 169*y, -y - 4*l + 674 = 0. What is the remainder when y is divided by 82?\n38\nSuppose 26*b = 30*b - 5*t - 17, 0 = 5*b - 2*t - 34. What is the remainder when 434 is divided by b?\n2\nSuppose 15*l + 72 = 18*l. Suppose 8*w = 2*w + 12. Suppose w*x + 95 = 3*x. Calculate the remainder when x is divided by l.\n23\nSuppose 2*a - 111 = -a. Let v = 146476 - 146374. Calculate the remainder when v is divided by a.\n28\nSuppose l - b - 8 = 2*b, -3*l = b + 16. Let u be 6*(-2)/(-4) + (-316)/l. Suppose -84*w + 74 = -u*w. What is the remainder when w is divided by 8?\n5\nLet w(k) = -55*k + 67. Calculate the remainder when 94 is divided by w(0).\n27\nSuppose -17*t + 2*g - 6 = -15*t, -3*t - 17 = -5*g. Calculate the remainder when 47 is divided by t.\n0\nWhat is the remainder when (-196)/(-10)*6230/178 is divided by 172?\n170\nSuppose 493*j - 490*j = 2*r + 408, 0 = 4*r. Calculate the remainder when 5029 is divided by j.\n133\nLet a(r) = 205*r + 4. Let i be a(-1). Suppose 0 = -7*d + d - 486. Let j = d - i. What is the remainder when j is divided by 31?\n27\nLet y be (-30)/(-5)*12/9. Suppose -3*j + 77 = b, 2*b - 144 = y*j - 4*j. What is the remainder when b is divided by ((-5)/(-2))/(2/12)?\n14\nWhat is the remainder when (78/(-585)*195)/(1*2/(-1118)) is divided by 51?\n50\nLet o be (0 + (-32)/(-6))/(6/81). Let p = o - 19. What is the remainder when p is divided by (10/25*5)/(2/9)?\n8\nLet p = 26128 + -26028. Calculate the remainder when p is divided by 13.\n9\nLet j = -70 + 118. Suppose 182*z - 183*z = -1258. Let y = -1245 + z. Calculate the remainder when j is divided by y.\n9\nLet t = 7858 + -6108. Calculate the remainder when t is divided by 103.\n102\nCalculate the remainder when 240 is divided by 6 - -14*((-3)/2 - -2).\n6\nLet b = -18 + 30. Let i be 4/18 - 236/36*-5. Suppose i - 407 = -11*g. Calculate the remainder when g is divided by b.\n10\nSuppose 1158*g - 1008 = 1116*g. What is the remainder when 689 is divided by g?\n17\nSuppose z + 1 = 7. Let a = 4037 + -4017. What is the remainder when 2*z/(-4) + 46 is divided by a?\n3\nSuppose -46*d = -51623 - 79477. Calculate the remainder when d is divided by 9.\n6\nLet f = 588 - 499. What is the remainder when f is divided by 27?\n8\nSuppose -52 = -4*v + 3*a, -3*a = -v + 5 + 8. What is the remainder when (129/6)/(6/(-3))*-12 is divided by v?\n12\nLet s = 27 - -11. Suppose 1117*t = -446*t - 745*t + 154636. Calculate the remainder when t is divided by s.\n29\nLet f = -196 - 86. Let m = -280 - f. Let j(w) = w**2 + 2*w + 2. What is the remainder when m is divided by j(-1)?\n0\nSuppose 0 = -5*z - 3*n + 9324, 5*z + 5*n - 9338 = 9*n. Calculate the remainder when z is divided by 78.\n72\nSuppose 22*l - 5*u = 26*l - 31, 57 = 3*l - 3*u. Suppose 0 = -19*o + l*o + 590. Calculate the remainder when o is divided by 20.\n18\nLet j = 16358 - 15849. Calculate the remainder when j is divided by 265.\n244\nSuppose -4*m - 1129 - 1303 = -3*a, -2*a + 3*m + 1622 = 0. What is the remainder when a is divided by 29?\n25\nLet q(u) = 4*u - 49. Let g(b) = -b + 16. Let k(i) = -7*g(i) - 2*q(i). Let h be k(-10). What is the remainder when 13 is divided by (8/5)/(h/(-20))?\n5\nSuppose -7*b = -20*b + 3250. Let p = -226 + b. Calculate the remainder when 111 is divided by p.\n15\nSuppose -4*w = 12 - 16, 0 = -5*y + w - 3531. Let a = y + 757. Calculate the remainder when 91 is divided by a.\n40\nLet z(o) = o**3 + 12*o**2 - 274*o - 27. What is the remainder when z(12) is divided by 8?\n5\nSuppose 5*u + 25*h = 22*h + 3570, 0 = 5*u + 2*h - 3565. What is the remainder when u is divided by 25?\n11\nSuppose 2*z - 114 = -4*c - 68, -119 = -3*z + 4*c. What is the remainder when 4717 is divided by z?\n31\nLet t(a) = 36*a**2 - 126*a - 137. What is the remainder when 11303 is divided by t(5)?\n131\nLet w(c) = -34*c**2 + 433*c + 145. What is the remainder when 461 is divided by w(13)?\n13\nLet r(j) = 2*j + 1. Let q(o) = -19*o - 167. Let f(l) = q(l) + 6*r(l). Calculate the remainder when f(-39) is divided by 19.\n17\nLet t(s) = s**3 + 5*s**2 + 3. Let u be t(-5). Suppose u*x - 32 = -x. Let w = 1571 - 1526. Calculate the remainder when w is divided by x.\n5\nWhat is the remainder when 29 + -24 + 765 + -1 is divided by 32?\n1\nSuppose 9*v - 10*v + 5 = 0. Suppose -3*n + 48 = -0*i + 5*i, -4*n - v = -i. What is the remainder when 178 is divided by i?\n7\nSuppose -24*c + 120 = -34*c. What is the remainder when -12 + 82176/132 + c/22 is divided by 36?\n34\nLet p = -308 + 312. Suppose -112*g + 113*g = 20. What is the remainder when g is divided by p?\n0\nLet x(h) be the third derivative of 3*h**4/4 - 23*h**3/2 + 9*h**2 + 15*h. Calculate the remainder when x(5) is divided by 16.\n5\nSuppose 25*t - 28*t + 2*f + 80 = 0, 14*f + 364 = 7*t. Suppose 5*p + 5*i = 2*p + 1145, -5*p + 1891 = 4*i. Calculate the remainder when p is divided by t.\n11\nSuppose 0 = 5*y + 10, 0 = -n - 12*y + 17*y + 17. Suppose 0 = -4*t + 3*t + 27. Calculate the remainder when n is divided by t/12*24/9.\n1\nSuppose 195*d - 125906 - 57979 = 0. Calculate the remainder when d is divided by 105.\n103\nSuppose -9*r - 6067 = -2*y - 8*r, 5*y - 15171 = 2*r. What is the remainder when y is divided by 31?\n30\nWhat is the remainder when 584 is divided by (((-4)/(-9))/(-2) + (-49348)/2628)/(-1)?\n14\nSuppose 0 = -540*r + 514*r + 2756. What is the remainder when r is divided by (-156)/(-15)*(-5)/(-2)?\n2\nSuppose -14*h + 3193 = 3571. Let z(i) = 32*i**2. Let k be z(1). Let d = k + h. What is the remainder when d is divided by 3?\n2\nLet l(r) = 2*r + 3. Let v be l(-5). Suppose 15*o - 480 = -5*o. Let c = v + o. Calculate the remainder when 48 is divided by c.\n14\nLet i(d) = d**2 + 9*d - 18. Let r be (-2)/3 - (560/(-21))/10. What is the remainder when 65 is divided by i(r)?\n1\nLet n = 9 - 3. Suppose -2*x - 20 = 0, -3*p + 184 = 1377*x - 1378*x. What is the remainder when p is divided by n?\n4\nSuppose -9904*g = -9903*g - 109. What is the remainder when 482 is divided by g?\n46\nCalculate the remainder when 32 is divided by (15 - (-18)/4*(-76)/114) + -3.\n5\nLet l(r) = 18358*r**3 + 7*r**2 + 23*r - 29. Calculate the remainder when l(1) is divided by 61.\n59\nLet i(n) = -n + 14. Let l be i(8). What is the remainder when 3772/17 + (-10)/(-510)*l is divided by 14?\n12\nSuppose -3 = -2*f + 4*u + 17, 0 = 4*f + 2*u - 10. Let s(p) = -p**2 - 91. Let j be s(11). Let o = j + 213. What is the remainder when f is divided by o?\n0\nSuppose -154 = -4*b - 5*p - 519, 2*p - 415 = 5*b. Calculate the remainder when (-2)/((20/b)/4) is divided by 13.\n8\nSuppose -4*n - 188 = -3*t - t, -t + 5*n = -67. Suppose -m - 10 + t = 0. Calculate the remainder when 6*1315/130 + 24/78 is divided by m.\n29\nLet k(v) = 4*v + 74. Calculate the remainder when k(22) is divided by 85.\n77\nSuppose s + 5 - 39 = 0. Suppose -108 + s = -q - 2*p, -5*q + 3*p = -422. Calculate the remainder whe"], ["mallest value? (a) 0.4 (b) 2911 (c) 1\na\nWhich is the second biggest value? (a) -1 (b) -0.07 (c) 2/287 (d) -4\nb\nWhich is the fourth biggest value? (a) -4 (b) -426 (c) 0.1 (d) -17 (e) 40\nd\nWhich is the third smallest value? (a) 13 (b) 5 (c) -8/13 (d) -0.5\nb\nWhat is the third biggest value in 3, -0.3, 2816, 4?\n3\nWhat is the fourth biggest value in -64/5, 0.4, 32, 41.5?\n-64/5\nWhat is the second smallest value in -14, -1, -0.5, -3, -1.1, -18/13?\n-3\nWhat is the smallest value in -440, 0, -0.1, 2, 2/7, -4/5?\n-440\nWhat is the second biggest value in -1/4, 453, -0.1, 0.1?\n0.1\nWhich is the second biggest value? (a) -4 (b) 0.3 (c) 1/2 (d) -851\nb\nWhat is the smallest value in 0.5, 0.035, -3, -2.7, 1/9?\n-3\nWhich is the biggest value? (a) -1 (b) -20784 (c) -3/5\nc\nWhat is the second smallest value in 1, 196, 15, 1/3, 0.3?\n1/3\nWhich is the second biggest value? (a) -0.4 (b) 2/15009 (c) 1\nb\nWhich is the fourth smallest value? (a) -8.3 (b) 1 (c) 0 (d) -0.09\nb\nWhich is the fifth smallest value? (a) -1 (b) 0.2 (c) -4 (d) 0 (e) 6915\ne\nWhich is the second smallest value? (a) 1 (b) 2564 (c) 0.4\na\nWhich is the third smallest value? (a) 4/5 (b) -3 (c) -131.18\na\nWhich is the fourth smallest value? (a) 0.061 (b) 2/11 (c) -0.2 (d) 312 (e) -1/3\nb\nWhich is the fourth biggest value? (a) -1/326 (b) -0.09 (c) -1/2 (d) 0\nc\nWhat is the biggest value in 0, 7/227929, 2/13, -3/4?\n2/13\nWhich is the third smallest value? (a) 5/2 (b) 2/11 (c) -31 (d) 4/7 (e) 0.04\nb\nWhich is the biggest value? (a) -371 (b) -2.5 (c) -0.3 (d) 0\nd\nWhich is the smallest value? (a) 3 (b) 4 (c) 2/41 (d) -2/13\nd\nWhat is the third smallest value in 4, -6, -3, 527?\n4\nWhich is the third smallest value? (a) -2/15 (b) -306/7 (c) 2/9\nc\nWhich is the third biggest value? (a) 0.6 (b) -4 (c) -1/2 (d) 0.8 (e) 517\na\nWhat is the second smallest value in -4, 391.6, 0, -2/7, 2/7?\n-2/7\nWhat is the smallest value in 0.12, -567, -69?\n-567\nWhich is the second smallest value? (a) -320 (b) -2/21 (c) -2/15 (d) 0.1\nc\nWhich is the third biggest value? (a) 7 (b) 1/43 (c) 13 (d) 84/5\na\nWhich is the smallest value? (a) 5 (b) -0.76 (c) 3 (d) -3/64\nb\nWhat is the second biggest value in -0.34, 3, 2/25, -0.2, 4/5?\n4/5\nWhat is the third biggest value in 2/9, 3/5, 1, 107, 2, -0.4?\n1\nWhich is the smallest value? (a) -3/7 (b) -4.6 (c) -2 (d) 35\nb\nWhat is the fifth biggest value in 0.1, -21, 2, 0.5, 2.34?\n-21\nWhich is the fifth smallest value? (a) -2 (b) -12 (c) 18 (d) 1/4 (e) 0.1\nc\nWhat is the smallest value in -3, -0.3, -3546.9, 8?\n-3546.9\nWhich is the third biggest value? (a) -10 (b) -5/3 (c) 4.9 (d) 0.06 (e) 1/2 (f) 3\ne\nWhich is the third smallest value? (a) -42/5 (b) 1 (c) -1/8 (d) -3/2 (e) 0.2\nc\nWhich is the third biggest value? (a) 49 (b) 3 (c) -19/4 (d) -2/9 (e) -3/2\nd\nWhat is the second smallest value in -1, 3, -32.2, 2/7?\n-1\nWhat is the biggest value in 3/4, -0.3, -2/11, -6, -772?\n3/4\nWhat is the fifth smallest value in -5, 1.73, 4, 0, 66/19?\n4\nWhat is the fourth smallest value in 31, 5/4, 2/21, 2/19?\n31\nWhich is the fourth smallest value? (a) 1/10 (b) -0.032 (c) 4 (d) 1 (e) 0.3 (f) 1/5\ne\nWhat is the biggest value in 15, 0.23, 16.68?\n16.68\nWhat is the fourth smallest value in -49, 1/2, -1/12, -2?\n1/2\nWhat is the fourth smallest value in -23, -1, -0.098, -0.5, 3/4?\n-0.098\nWhich is the fourth biggest value? (a) -0.27 (b) 30 (c) 1 (d) 0 (e) -4\na\nWhich is the smallest value? (a) -1/6 (b) 4/5 (c) 133 (d) 2 (e) -1130\ne\nWhich is the smallest value? (a) 5 (b) 0.62 (c) 1/12662\nc\nWhich is the fourth smallest value? (a) 4 (b) 0.18 (c) 28 (d) 0.5 (e) -0.1 (f) 2\nf\nWhat is the third smallest value in -5.4, -0.018, 1/4?\n1/4\nWhich is the biggest value? (a) 5/2 (b) -0.1 (c) -5 (d) -4 (e) 0.5 (f) -5/8\na\nWhich is the second smallest value? (a) -947 (b) 12 (c) -0.14\nc\nWhat is the second biggest value in 32, -2.1, 2/119?\n2/119\nWhat is the biggest value in -1/20, -8, -5/8?\n-1/20\nWhich is the biggest value? (a) -0.3 (b) 7 (c) 1 (d) -359\nb\nWhich is the third smallest value? (a) -16/3 (b) -0.4 (c) -968\nb\nWhat is the biggest value in -60.423, 0.4, -2, 4?\n4\nWhich is the second biggest value? (a) 25146 (b) 2/5 (c) -2/7 (d) 0.05\nb\nWhich is the third smallest value? (a) -2/1931 (b) 3/5 (c) -1/5\nb\nWhat is the fourth smallest value in 13, 1.96, 3, 1/9?\n13\nWhich is the fourth biggest value? (a) -2/7 (b) -4 (c) -2 (d) 1/2 (e) 76/9 (f) -0.3\nf\nWhat is the second smallest value in -2/1309, 12, -0.01, -0.19?\n-0.01\nWhich is the second biggest value? (a) 7 (b) 8/9 (c) 1/5 (d) -1/39\nb\nWhich is the fourth biggest value? (a) 0.033 (b) 3 (c) -2 (d) 2\nc\nWhich is the third smallest value? (a) 12/5 (b) 0 (c) -30 (d) -4/3 (e) -5/2 (f) 5\nd\nWhich is the fifth biggest value? (a) 22/21 (b) 10 (c) 0.2 (d) 5 (e) -4\ne\nWhich is the third biggest value? (a) 28550 (b) 0 (c) 0.4\nb\nWhich is the smallest value? (a) -20 (b) -1019 (c) 2/5 (d) 2/15\nb\nWhich is the fourth biggest value? (a) 0.049 (b) 5 (c) -5 (d) 1 (e) 0.1 (f) 0.06\nf\nWhat is the fourth biggest value in 2, 0.4, -2/13, 0.2, 0.18?\n0.18\nWhat is the sixth biggest value in 11, 161, -10, -2/7, -9, 1?\n-10\nWhat is the second smallest value in 0.084, 58/7, 6/5?\n6/5\nWhich is the fifth smallest value? (a) 3/2 (b) -2 (c) 4 (d) -1/2841 (e) 2/3 (f) 0.16\na\nWhich is the biggest value? (a) -0.1 (b) 6 (c) -25 (d) -1/973 (e) 1\nb\nWhich is the smallest value? (a) 0.1 (b) -1/27 (c) 0.3 (d) -696\nd\nWhich is the fourth biggest value? (a) 4/5 (b) -3/13 (c) -5 (d) -1.6\nc\nWhich is the fifth smallest value? (a) 5 (b) -0.06 (c) -0.1 (d) 4 (e) 2/35 (f) 0\nd\nWhich is the fourth biggest value? (a) 1.0927 (b) -2/5 (c) 0.1 (d) -1 (e) -3\nd\nWhat is the fourth smallest value in -11, 119, 1, 1.4, 0.1?\n1.4\nWhat is the second biggest value in -91, 1/9, -0.11, -1/2, -5, 0?\n0\nWhich is the third smallest value? (a) -2620 (b) -0.4 (c) 5\nc\nWhich is the second biggest value? (a) -2 (b) 0.4 (c) -2/3 (d) 275/4\nb\nWhich is the third biggest value? (a) -5 (b) -0.046 (c) -284\nc\nWhich is the second smallest value? (a) 38 (b) -3/11 (c) 0.3 (d) 1/5 (e) -1\nb\nWhich is the second biggest value? (a) -756/11 (b) -2/569 (c) 0.4\nb\nWhich is the smallest value? (a) -2 (b) 337 (c) -90\nc\nWhat is the fourth biggest value in 2/3, 1, -243, -3, -0.1?\n-3\nWhich is the third biggest value? (a) 5 (b) -2/7 (c) 4 (d) -0.0864 (e) -1\nd\nWhich is the fourth smallest value? (a) 14 (b) -3 (c) -4/7 (d) 161\nd\nWhat is the fourth smallest value in 1/5, 1/3, 2.0555, -3/5?\n2.0555\nWhich is the fourth smallest value? (a) 0.1 (b) -1/3 (c) 1 (d) -8 (e) -9.6 (f) -3/7\nb\nWhich is the fourth biggest value? (a) -0.3 (b) 25/9 (c) -0.1 (d) 0.2 (e) 5\nc\nWhat is the second biggest value in -41.6, -1, -4, -0.3?\n-1\nWhich is the smallest value? (a) -3 (b) 0.183 (c) 5 (d) 0.01 (e) 0.2\na\nWhich is the third smallest value? (a) -5 (b) -2/9 (c) -1/4 (d) 548 (e) 2/9\nb\nWhich is the smallest value? (a) -1/12 (b) 0.97 (c) 2 (d) -92\nd\nWhich is the biggest value? (a) 0.9 (b) -0.7 (c) -5 (d) -7\na\nWhat is the third biggest value in 1/11, 1.45, -4, 2, -8?\n1/11\nWhat is the third smallest value in -10, 0.4, 84/47?\n84/47\nWhich is the smallest value? (a) 421 (b) 21 (c) 2/15\nc\nWhat is the second biggest value in 2/17, -0.4, -15/13, -1/5?\n-1/5\nWhich is the smallest value? (a) 3 (b) 88 (c) 2727\na\nWhat is the second biggest value in -0.00741, -4, 0.1, -1, -2, -1/9?\n-0.00741\nWhat is the fourth smallest value in -2, -84, -4, -5, 7?\n-2\nWhich is the sixth biggest value? (a) 1 (b) -2/5 (c) -1/38 (d) -1.31 (e) -2/15 (f) -1\nd\nWhich is the biggest value? (a) -0.03 (b) 16 (c) 108\nc\nWhich is the third biggest value? (a) -2 (b) 2 (c) 3 (d) -303 (e) 14\nb\nWhat is the biggest value in 1/5220, -0.025, 2?\n2\nWhich is the second biggest value? (a) 85/5952 (b) 2/11 (c) 4\nb\nWhat is the second biggest value in -5, 9, -0.1, -0.5, 515?\n9\nWhich is the third smallest value? (a) -2/3587 (b) 5 (c) -0.4\nb\nWhich is the biggest value? (a) -17958 (b) 3/4 (c) -0.5\nb\nWhich is the fourth smallest value? (a) -58/3 (b) 1 (c) 0 (d) 4/7 (e) -10\nd\nWhat is the smallest value in -3/5"], ["*2 + 3*m - 5. Let b = 18 - 16. Let j(k) = k**2 + 14 - k - 13 - b*k**2. What is -3*j(u) - n(u)?\n-4*u**2 + 2\nLet q(s) = s**3 - 13*s**2 + 2*s + 1. Let l(y) = 4*y**3 - 93*y**2 + 12*y - 53. Calculate -l(m) + 6*q(m).\n2*m**3 + 15*m**2 + 59\nLet x(r) = 0*r - 55728 + 3*r + 55728. Let n(o) = -o - 1. Give 2*n(d) + x(d).\nd - 2\nLet g = -9 + 11. Suppose -1 = v, g*j - 2*v = 2 + 6. Let h(y) = y + 1. Let a(p) be the third derivative of -p**4/4 - p**3/2 - 2797*p**2. Determine j*h(i) + a(i).\n-3*i\nLet j(o) = -o**2 + 10*o - 2. Let x be (2 - -4 - (-4 - -8)/2) + -6. Let k(g) = g**2 - 9*g + 3. What is x*k(t) - 3*j(t)?\nt**2 - 12*t\nLet o be (4 - (-49)/14) + 42/(-28). Let j(t) = 9*t**2 - 6*t - 7. Let b(w) = 5*w**2 - 3*w - 3. Calculate o*j(u) - 11*b(u).\n-u**2 - 3*u - 9\nLet j(f) = 14*f**2 - 24 + 5 - 15*f**2 + 8 + f + 10. Let m = 0 + -1. Let x(i) = 5*i**3 + 5*i**2 - 4*i + 6. What is m*x(g) - 4*j(g)?\n-5*g**3 - g**2 - 2\nLet r(x) = -x**2 - 11*x + 9*x**2 - 2*x**2 + 5*x**2 - 4*x**2. Suppose 0 = 5*c - 3 + 58. Let m(g) = 4*g**2 - 6*g. Give c*m(a) + 6*r(a).\n-2*a**2\nLet i(m) = -4*m**2 + 11*m + 14. Let a(v) = 9 - 3*v**2 - 6*v + v + 11*v + v. Let w be 5/(-2)*(-8)/24*-6. Determine w*i(g) + 8*a(g).\n-4*g**2 + g + 2\nLet m(p) = 4474*p + 2. Let c(r) = -4514*r - 3. Give 6*c(j) + 7*m(j).\n4234*j - 4\nLet j = 31 - 33. Let w(d) = 6*d**2 + d - 2. Let l(t) = 5*t**2 + 2*t - 3. Give j*l(k) + 3*w(k).\n8*k**2 - k\nLet x(m) = -13*m**3 + m**2 - 174*m - 171*m - 166*m - 172*m + 688*m - 11. Let h(l) = 7*l**3 - l**2 - 3*l + 6. What is -5*h(t) - 3*x(t)?\n4*t**3 + 2*t**2 + 3\nLet s(n) = -12*n**3 + 10*n**2 - n. Let b(c) = -38*c**3 + 32*c**2 - 2*c + 2. Determine -5*b(f) + 16*s(f).\n-2*f**3 - 6*f - 10\nLet z(m) = 45 - 110 - 4*m + 63. Let d = 12 - 18. Let s(x) = 8*x + 4. Determine d*s(l) - 13*z(l).\n4*l + 2\nLet l(b) = 2*b**2 + b - 1. Let c(q) = -11*q**2 - 4*q + 212. Determine c(i) + 4*l(i).\n-3*i**2 + 208\nSuppose 27 = a + 20, 0 = 2*i + 5*a - 23. Let t(l) = -l + 1. Let o(s) = -8*s**2 + 26*s - 26. Calculate i*o(r) - 156*t(r).\n48*r**2\nLet n(l) = -58*l + 2053. Let q(j) = 46*j - 2052. Give -4*n(d) - 5*q(d).\n2*d + 2048\nLet n(b) = -2*b**3 + 12*b**2 + 60*b - 6. Let l(k) = 3*k**3 - 22*k**2 - 122*k + 11. Determine 6*l(m) + 11*n(m).\n-4*m**3 - 72*m\nLet k(f) = 3*f**2 - 60*f - 6. Let i(j) = -j**2 - 11*j. Determine 5*i(z) - k(z).\n-8*z**2 + 5*z + 6\nLet k(s) = 12*s**2 - 24. Suppose -4*u = 2*q + 16, -3*u - 11 = -5*q + 1. Suppose q = -50*c + 7*c - 1032. Let w(m) = -1. Calculate c*w(g) + k(g).\n12*g**2\nLet d = -47 + 51. Suppose -7 = -d*m + a, 1 = 4*m + a - 0. Let v(t) = -t**2. Let h(u) = -u**3 + 3*u**2. Give m*h(j) + 3*v(j).\n-j**3\nLet j(a) = -2*a + 7. Let f(k) = -147*k + 539. Let w(s) = -2*f(s) + 154*j(s). Let n(c) = -c. Determine 3*n(o) - w(o).\n11*o\nLet d(f) = -263*f**2 - 26*f + 12. Let i(s) = -44*s**2 - 4*s + 2. What is 6*d(b) - 39*i(b)?\n138*b**2 - 6\nLet j(a) be the third derivative of -13*a**5/30 - 17*a**4/24 + 3*a**3 - a**2 + 10*a - 51. Let u(b) = -9*b**2 - 6*b + 6. What is 6*j(f) - 17*u(f)?\n-3*f**2 + 6\nLet p be 90/(-21)*(-112)/(-24). Let x be (-57)/6 + (p/8 - -3). Let a(u) = -4*u**2 + 3*u - 2. Let o(z) = -z**3 + 17*z**2 - 13*z + 9. Calculate x*a(t) - 2*o(t).\n2*t**3 + 2*t**2 - t\nLet j(f) = -17*f**2 + 2330*f + 10. Let r(p) = -6*p**2 + 777*p + 3. What is -4*j(i) + 11*r(i)?\n2*i**2 - 773*i - 7\nLet y(x) = -9 + 13 - 3*x**2 + 15*x**3 + 4*x**2 + 3. Let r(t) = 10*t**3 + t**2 + 5. Let w(o) = -18*o - 1145. Let u be w(-64). What is u*r(z) - 5*y(z)?\n-5*z**3 + 2*z**2\nLet b(q) = 1170*q**2 - 54*q - 54. Let z(a) = a**2 - a - 1. Determine 2*b(j) - 108*z(j).\n2232*j**2\nLet i(d) = 9*d - 5. Suppose 5*j - 4835 = -5*m, 2*j - 4*j - m + 1939 = 0. Let t(l) = -j*l - 984*l - 4 - 3 + 1970*l. Determine -8*i(u) + 5*t(u).\n-2*u + 5\nLet g(l) = -3733*l - 8. Let r(f) = -3733*f - 12. What is -3*g(n) + 2*r(n)?\n3733*n\nLet l(i) = 15*i**2 - 7. Suppose -19 - 97 = -13*j - 25. Let b(v) = -8*v**2 + 4. What is j*b(y) + 4*l(y)?\n4*y**2\nLet b(c) = -c**3 - 410*c**2 - 4*c. Let y(q) = q**3 + 412*q**2 + 3*q. Calculate 5*b(t) + 6*y(t).\nt**3 + 422*t**2 - 2*t\nLet i(d) = -14*d**3 + 43*d**2 + 3*d + 3. Let w(u) = -15*u**3 + 32*u**2 + 2*u + 5. What is -3*i(p) + 4*w(p)?\n-18*p**3 - p**2 - p + 11\nLet a(o) = -6*o - 2 + 9*o**2 + 1 + 4*o. Let k(i) = -5*i**2 + i. Let q be ((-77)/((-1694)/44))/(2/(-3)). Give q*a(u) - 5*k(u).\n-2*u**2 + u + 3\nLet g(z) be the second derivative of 7*z**3 + 610*z. Let u(v) = v. Calculate 3*g(j) - 144*u(j).\n-18*j\nLet v(z) be the second derivative of -19*z**5/20 + z**3/2 - 3*z**2/2 - z + 240. Let y(g) = 286*g**3 - 44*g + 44. Determine 44*v(b) + 3*y(b).\n22*b**3\nSuppose -5*g - 20 = m, 3*m - m - 5 = 5*g. Let i(c) = 18*c. Let f(a) = -2*a - 3. Let r(s) = -25*s + 300. Let o(j) = -100*f(j) - r(j). Calculate m*o(d) + 63*i(d).\n9*d\nLet r(t) = 14*t - 68. Let i(k) = 14*k - 66. Determine -4*i(l) + 3*r(l).\n-14*l + 60\nLet z(g) = -g + 1. Let v(x) be the first derivative of -7*x**2/2 + 2*x + 844. Give -v(p) + 5*z(p).\n2*p + 3\nLet b(a) = 14*a - 14 - 16*a + a. Let k(n) = -2. Let l(r) = 2*r**2 + r. Let c be l(-2). Suppose y + 2*m - c*m = 18, -3*m = 5*y + 2. What is y*b(j) - 14*k(j)?\n-2*j\nLet r(a) = 11*a + 6 - 7 + 7*a - 27*a + 10*a. Let k(q) = 18*q - 22. Determine 2*k(p) - 44*r(p).\n-8*p\nLet q(x) = x**2 - 65*x + 1063. Let d be q(31). Let n(s) = -13*s - 41. Let j(m) = 3*m + 10. Determine d*j(l) + 2*n(l).\nl + 8\nLet c(n) be the third derivative of -n**4/24 + 5*n**3/6 - n**2 + 2793*n. Let q = 1 - 3. Let y(w) be the first derivative of -4*w + 17. Give q*c(a) - 3*y(a).\n2*a + 2\nLet u(o) = -4*o**2 - 9*o + 13. Let x(q) = -13*q**2 - 6*q + 10. Let w(g) = 9*g**2 + 5*g - 8. Let d(c) = 3*w(c) + 2*x(c). What is -7*d(n) - 2*u(n)?\nn**2 - 3*n + 2\nLet q(n) = -n**2 + 9*n - 6. Let h(g) = g**2 - g + 1. Suppose 56*o - 315 = -49*o. Give o*h(z) + q(z).\n2*z**2 + 6*z - 3\nLet x(o) = o**3 - 8*o**2 + 3*o - 9. Let n be x(8). Suppose 8*p = n + 113. Let j(v) = -p + 28 - 11 + v. Let y(k) = 2*k**2 - 10*k - 10. Calculate -10*j(a) - y(a).\n-2*a**2\nLet v(t) = 9*t**3 - 4*t**2 + 55*t + 6. Let p(r) = r**3 + 1. Calculate -6*p(g) + v(g).\n3*g**3 - 4*g**2 + 55*g\nLet p be 1*((1 - 39/6) + 9/6). Let k(r) = -2*r - 11. Let f(s) = 2*s + 10. Calculate p*f(m) - 5*k(m).\n2*m + 15\nLet i(m) = -23*m**3 - 251*m + 28. Let d(y) = -8*y**3 - 84*y + 8. Calculate 7*d(g) - 2*i(g).\n-10*g**3 - 86*g\nLet i(c) = -c**2 + c. Let n(f) = 3*f**3 + 0*f**3 + 3*f - 6*f**2 - 4*f**3. Let y be (40/(-28))/((-12)/42). Let l be 6 - y - (1 - -1). Give l*n(b) + 4*i(b).\nb**3 + 2*b**2 + b\nLet t(m) = 29*m + 2055. Let z(r) = 4*r - 3. Give -t(x) + 7*z(x).\n-x - 2076\nLet q(b) = 16*b**3 - 5*b**2 - 3*b. Let t be ((-27)/(-18))/(7/14). Let p(o) = -o**3 - o**2 - o. Calculate t*p(s) - q(s).\n-19*s**3 + 2*s**2\nLet i(m) = -m**2 + 4*m + 6. Let d(x) = 26327*x + 26305*x - 52643*x + 2*x**2 - 17. What is -4*d(y) - 11*i(y)?\n3*y**2 + 2\nLet v(a) = -6*a + 44. Let p be v(7). Let b(h) = -14*h**3 + 2*h - 2. Let f(q) = -2*q**3 - 1191*q**2 + 1191*q**2 + 17*q**3 - 3*q + 3. Calculate p*f(z) + 3*b(z).\n-12*z**3\nLet n(x) = x**2 - 12*x - 43. Let w(h) = 2*h**2 - 25*h - 82. Give 5*n(t) - 3*w(t).\n-t**2 + 15*t + 31\nLet l(d) = -16*d**3 + d - 230. Let u(k) = 20*k**3 + k**2 - 2*k + 231. Calculate -3*l(v) - 2*u(v).\n8*v**3 - 2*v**2 + v + 228\nLet r be (0 - -3) + (24 - (11 + 17)). Let t(y) = -2*y**3 + 4*y**2 - 9. Let p(d) = d**2. What is r*p(m) + t(m)?\n-2*m**3 + 3*m**2 - 9\nLet f(b) = 1186*b - 9. Let d(m) = -3554*m + 26. What is 6*d(g) + 17*f(g)?\n-1162*g + 3\nLet a(m) = m**3 + 2*m**2 + 6*m - 1. Let n(j) = 828*j**3 + 22*j**2 + 66*j - 11. What is 22*a(t) - 2*n(t)?\n-1634*t**3\nLet n(w) = -2*w**2 + 2. Suppose 0 = 54*l + 18 - 126. Suppose l*b - 8 = -2*v, 3*b - v = 8 - 0. Let f(q) = 2*q**2 - q - 1. What is b*f(r) + 2*n(r)?\n2*r**2 - 3*r + 1\nLet r(g) = 5 - 978841*g**3 + 978838*g**3 + 4*g**2 - 23. Let y(w) = 2*w**3 - 3*w**2 + 12. Give -5*r(a) - 7*y(a).\na**3 + a**2 + 6\nLet m = 935 + -884. Let t(f) = -8*f - 8. Let l(r) = r + 1. What is m*l(x) + 6*t(x)?\n3*x + 3\nLet z = -1198 + 1169. Let d(u) = 32*u + 3. Let n(m) = 319*m + 29. Determine z*d(y) + 3*n(y).\n29*y\nLet h(x) = -4*x**3 + 6*x**2 - 7*x - 7. Let n(r) = 9*r**3 - 12*r**2 + 15*r + 15. Let m = 13101 - 13095. Calculate m*n(j) + 13*h(j).\n2*j**3 + 6*j**2 - j - 1\nLet b(k) = 2*k. Suppose 4*h + 4 = -4. Let o = -1 + h. Let y(d) = 2*d - 1. Let g be 3 - 36/42 - 8/56. What is g*y(x) + o*b(x)?\n-2*x - 2\nLe"], ["is 1a (base 13) in base 4?\n113\nWhat is 2122 (base 3) in base 10?\n71\nWhat is -6 (base 9) in base 8?\n-6\n32 (base 11) to base 3\n1022\nConvert -4 (base 14) to base 6.\n-4\nWhat is -1 (base 11) in base 15?\n-1\n-4 (base 9) to base 2\n-100\n-252 (base 7) to base 2\n-10000111\nWhat is 11 (base 2) in base 3?\n10\nWhat is 7b (base 16) in base 8?\n173\nWhat is 62 (base 7) in base 10?\n44\nWhat is a1 (base 13) in base 14?\n95\nConvert 13 (base 14) to base 4.\n101\nConvert -11 (base 2) to base 7.\n-3\nWhat is -1001 (base 2) in base 11?\n-9\nWhat is -1002 (base 4) in base 10?\n-66\nWhat is 11 (base 4) in base 11?\n5\nWhat is -4 (base 9) in base 6?\n-4\n-4 (base 8) to base 7\n-4\nWhat is 233 (base 5) in base 8?\n104\n-1010 (base 2) to base 9\n-11\nConvert 122 (base 6) to base 14.\n38\nConvert 0 (base 10) to base 4.\n0\nConvert 23 (base 5) to base 16.\nd\n-21 (base 3) to base 2\n-111\nConvert -3 (base 12) to base 7.\n-3\nConvert 7 (base 13) to base 3.\n21\n11 (base 6) to base 9\n7\n25 (base 6) to base 12\n15\n-12 (base 4) to base 15\n-6\n0 (base 2) to base 13\n0\n-18 (base 11) to base 10\n-19\n-2 (base 12) to base 10\n-2\nWhat is 193 (base 10) in base 7?\n364\nWhat is -11 (base 7) in base 15?\n-8\nWhat is 2 (base 10) in base 5?\n2\n-106 (base 8) to base 5\n-240\nWhat is -24 (base 15) in base 6?\n-54\nConvert -1111 (base 2) to base 4.\n-33\nWhat is 2 (base 10) in base 3?\n2\n4 (base 11) to base 7\n4\n-4 (base 8) to base 12\n-4\nWhat is 1 (base 3) in base 8?\n1\nWhat is 22 (base 7) in base 4?\n100\nWhat is 3 (base 11) in base 12?\n3\n-67 (base 9) to base 7\n-115\nWhat is -17 (base 9) in base 4?\n-100\nWhat is 78 (base 9) in base 13?\n56\nConvert -5 (base 14) to base 7.\n-5\n-2 (base 11) to base 15\n-2\n28 (base 13) to base 5\n114\n-5 (base 13) to base 12\n-5\n-8 (base 9) to base 12\n-8\nConvert -1 (base 3) to base 6.\n-1\nConvert 55 (base 9) to base 12.\n42\n12 (base 10) to base 6\n20\nConvert 95 (base 14) to base 7.\n245\nConvert 1 (base 7) to base 16.\n1\nWhat is 4 (base 8) in base 16?\n4\n-2 (base 3) to base 4\n-2\n-30 (base 15) to base 9\n-50\nConvert 5 (base 14) to base 10.\n5\nWhat is -58 (base 13) in base 9?\n-81\nConvert 55 (base 8) to base 16.\n2d\nWhat is -1121 (base 3) in base 8?\n-53\nWhat is 2 (base 15) in base 13?\n2\nWhat is -10 (base 2) in base 6?\n-2\nConvert 5 (base 7) to base 12.\n5\n-1 (base 8) to base 4\n-1\nWhat is 10 (base 2) in base 13?\n2\nWhat is 203 (base 5) in base 8?\n65\nConvert 45 (base 11) to base 12.\n41\nWhat is 39 (base 15) in base 14?\n3c\nWhat is 9 (base 14) in base 11?\n9\nWhat is -21 (base 6) in base 2?\n-1101\n0 (base 8) to base 9\n0\nConvert 1 (base 9) to base 11.\n1\nConvert 10111110 (base 2) to base 12.\n13a\nConvert -1100 (base 2) to base 14.\n-c\nConvert 23 (base 12) to base 8.\n33\nWhat is 166 (base 12) in base 14?\n11c\nConvert 116 (base 11) to base 2.\n10001010\n0 (base 11) to base 3\n0\n13 (base 4) to base 11\n7\nWhat is a6 (base 13) in base 3?\n12001\n355 (base 7) to base 14\nd5\nWhat is -2 (base 4) in base 12?\n-2\nWhat is 140 (base 5) in base 12?\n39\n10 (base 4) to base 10\n4\nWhat is -3 (base 12) in base 8?\n-3\n-111 (base 3) to base 10\n-13\nWhat is -20 (base 10) in base 9?\n-22\nConvert 1100 (base 5) to base 11.\n127\nConvert -1 (base 4) to base 13.\n-1\n-11110100 (base 2) to base 12\n-184\nConvert -101011 (base 3) to base 9.\n-334\nConvert -10 (base 3) to base 15.\n-3\nConvert -10112 (base 3) to base 8.\n-137\n6 (base 12) to base 6\n10\nWhat is 8 (base 14) in base 9?\n8\n101 (base 2) to base 10\n5\nWhat is 2 (base 15) in base 11?\n2\nWhat is -30 (base 11) in base 15?\n-23\n-11001 (base 2) to base 10\n-25\n-3 (base 8) to base 13\n-3\nConvert 200 (base 4) to base 8.\n40\nWhat is -2f (base 16) in base 15?\n-32\nConvert -10210 (base 3) to base 8.\n-146\nConvert -11111010 (base 2) to base 12.\n-18a\nConvert 0 (base 9) to base 15.\n0\nWhat is -131 (base 5) in base 4?\n-221\nConvert -a4 (base 13) to base 14.\n-98\n2 (base 11) to base 16\n2\nWhat is -24 (base 13) in base 3?\n-1010\nWhat is 2 (base 13) in base 7?\n2\nConvert -1 (base 7) to base 12.\n-1\nConvert 104 (base 8) to base 12.\n58\nWhat is -100 (base 3) in base 15?\n-9\n-3 (base 7) to base 9\n-3\nWhat is 65 (base 11) in base 10?\n71\nConvert 3 (base 12) to base 2.\n11\n-2 (base 11) to base 10\n-2\n-2 (base 11) to base 13\n-2\nConvert 3 (base 5) to base 10.\n3\n25 (base 9) to base 4\n113\nWhat is -5 (base 7) in base 5?\n-10\nConvert 5 (base 11) to base 3.\n12\n72 (base 11) to base 4\n1033\nConvert -4 (base 6) to base 13.\n-4\n-2 (base 14) to base 5\n-2\nWhat is -10 (base 7) in base 12?\n-7\nConvert 23 (base 4) to base 16.\nb\n5 (base 7) to base 3\n12\nConvert -2 (base 14) to base 5.\n-2\n4 (base 15) to base 12\n4\n-1 (base 12) to base 5\n-1\nWhat is 20 (base 10) in base 8?\n24\n5e (base 15) to base 16\n59\nConvert -234 (base 7) to base 6.\n-323\nConvert -54 (base 8) to base 6.\n-112\n0 (base 14) to base 4\n0\nWhat is -32 (base 7) in base 4?\n-113\nWhat is -1011 (base 2) in base 7?\n-14\n0 (base 3) to base 16\n0\n-7 (base 9) to base 15\n-7\n6 (base 7) to base 15\n6\nWhat is 4 (base 12) in base 7?\n4\n-8 (base 14) to base 2\n-1000\nWhat is -2 (base 8) in base 9?\n-2\nWhat is -30 (base 6) in base 12?\n-16\nWhat is -7 (base 16) in base 11?\n-7\n-2 (base 3) to base 16\n-2\nConvert -1 (base 4) to base 6.\n-1\nConvert 183 (base 11) to base 10.\n212\n1 (base 15) to base 16\n1\nc (base 16) to base 2\n1100\nWhat is 4 (base 11) in base 15?\n4\nConvert -3f (base 16) to base 2.\n-111111\nConvert 432 (base 5) to base 6.\n313\nWhat is 26 (base 8) in base 4?\n112\n-1002 (base 3) to base 9\n-32\n-9 (base 13) to base 3\n-100\nWhat is 5a (base 14) in base 9?\n88\n0 (base 16) to base 2\n0\n254 (base 7) to base 12\nb5\n2 (base 5) to base 6\n2\n-1 (base 16) to base 10\n-1\nConvert a (base 16) to base 15.\na\n125 (base 10) to base 11\n104\nConvert 2 (base 10) to base 8.\n2\nConvert 0 (base 10) to base 9.\n0\n-40 (base 6) to base 5\n-44\nConvert 4 (base 15) to base 16.\n4\n-7 (base 9) to base 3\n-21\n6 (base 14) to base 16\n6\nWhat is 25 (base 12) in base 9?\n32\nConvert 11011 (base 2) to base 10.\n27\n-10 (base 3) to base 5\n-3\n-212 (base 4) to base 13\n-2c\n-322 (base 4) to base 16\n-3a\n1026 (base 7) to base 12\n263\nWhat is -60 (base 7) in base 4?\n-222\n20 (base 10) to base 15\n15\nWhat is 21 (base 3) in base 11?\n7\n-4 (base 8) to base 10\n-4\n-13 (base 10) to base 7\n-16\n-22 (base 5) to base 13\n-c\n1020 (base 3) to base 16\n21\nWhat is -3 (base 8) in base 15?\n-3\nWhat is 1 (base 4) in base 5?\n1\nConvert 2 (base 9) to base 7.\n2\nWhat is -46 (base 9) in base 11?\n-39\nConvert 7 (base 11) to base 4.\n13\nWhat is 164 (base 11) in base 2?\n10111111\nConvert 120 (base 7) to base 9.\n70\n-31 (base 6) to base 14\n-15\nWhat is 22 (base 5) in base 13?\nc\n-2 (base 6) to base 12\n-2\nWhat is -5 (base 13) in base 11?\n-5\nWhat is -70 (base 9) in base 7?\n-120\nWhat is 10 (base 2) in base 12?\n2\nConvert -1203 (base 4) to base 16.\n-63\nConvert 0 (base 5) to base 15.\n0\n-10 (base 2) to base 10\n-2\n23 (base 7) to base 4\n101\nWhat is 1322 (base 4) in base 9?\n145\nWhat is -1014 (base 5) in base 13?\n-a4\nConvert 30 (base 7) to base 11.\n1a\n-20 (base 8) to base 10\n-16\nWhat is -1 (base 8) in base 14?\n-1\nWhat is 20 (base 3) in base 10?\n6\nWhat is 11 (base 10) in base 12?\nb\n-9a (base 11) to base 3\n-11001\nConvert 3 (base 12) to base 4.\n3\nConvert -4 (base 8) to base 16.\n-4\nWhat is 1a (base 16) in base 7?\n35\n-44 (base 5) to base 16\n-18\n-10 (base 6) to base 7\n-6\nWhat is 15 (base 7) in base 15?\nc\nConvert -120 (base 4) to base 16.\n-18\n-100000 (base 2) to base 3\n-1012\nWhat is -11 (base 15) in base 16?\n-10\nConvert 0 (base 3) to base 7.\n0\nConvert 225 (base 8) to base 15.\n9e\nConvert 5b (base 15) to base 12.\n72\nWhat is 224 (base 6) in base 9?\n107\nConvert 35 (base 16) to base 7.\n104\nConvert -5 (base 15) to base 5.\n-10\nWhat is -233 (base 4) in base 6?\n-115\nConvert -1101 (base 3) to base 2.\n-100101\nWhat is -220 (base 3) in base 13?\n-1b\nWhat is -3 (base 15) in base 11?\n-3\n-41 (base 13) to base 12\n-45\nWhat is 20122 (base 3) in base 10?\n179\n-34 (base 7) to base 11\n-23\n-52 (base 14) to base 6\n-200\nConvert -5 (base 12) to base 2.\n-101\nConvert -2 (base 8) to base 4.\n-2\n-75 (base 11) to base 16\n-52\nConvert 1001 (base 2) to base 10.\n9\nConvert -4 (base 12) to base 4.\n-10\nConvert -11000 (base 2) to base 10.\n-24\nWhat is b (base 15) in base 8?\n13\nConvert -1122 (base 4) to base 2.\n-1011010\n-2 (base 12) to base 5\n-2\nWhat is -24 (base 10) in base 14?\n-1a\nWhat is 5 (base 8) in base 7?\n5\nConvert -1 (base 2) to base 15.\n-1\nConvert 15 (base 9) to base 3.\n112\n-2 (base 15) to base 8\n-2\nConvert -111111 (base 2) t"], ["d derivative of 169*l**5/30 + 65*l**4/12 + 25*l**3/12 + 2*l**2 + 61*l. Factor d(f).\n(26*f + 5)**2/2\nLet k(h) be the first derivative of h**8/6720 - h**7/840 - 25*h**3/3 + 13. Let n(t) be the third derivative of k(t). Factor n(s).\ns**3*(s - 4)/4\nLet p = -2402/3 + 801. Let m(l) be the third derivative of 0*l - 1/35*l**7 - 7*l**2 + p*l**3 + 1/30*l**6 - 1/4*l**4 + 1/168*l**8 + 1/15*l**5 + 0. Factor m(j).\n2*(j - 1)**4*(j + 1)\nSuppose 7*h - 5*h + 2 = 0. Let q(i) = i**3 + i**2 - i + 1. Let l(u) = 5*u**3 + 7*u**2 - 5*u + 5. Let o(p) = h*l(p) + 6*q(p). Solve o(a) = 0 for a.\n-1, 1\nLet i = -141 - -140. Let n be (0 - (-15)/(-80))/(i/4). Factor -1/2*l**3 - 1/2*l**2 + 3/4*l - 1/4 - 1/4*l**5 + n*l**4.\n-(l - 1)**4*(l + 1)/4\nLet y(a) be the third derivative of 0 - 6*a**2 + 1/360*a**6 + 0*a**3 + 0*a - 1/45*a**5 + 1/18*a**4. What is c in y(c) = 0?\n0, 2\nLet b(v) be the second derivative of 3/20*v**5 + 0 - 3/2*v**2 + 1/4*v**4 - 1/2*v**3 - 22*v. Determine z so that b(z) = 0.\n-1, 1\nSuppose k = -7*k + 24. Let n(d) = 2*d**3 - 3*d**2 - 8*d - 3. Let u be n(k). Factor -1/2*t + 1/2*t**5 + t**2 - t**4 + 0*t**3 + u.\nt*(t - 1)**3*(t + 1)/2\nLet j(a) be the third derivative of -a**5/10 + 17*a**4/6 - 11*a**3/3 + 8*a**2 + 1. Factor j(u).\n-2*(u - 11)*(3*u - 1)\nLet r(y) = -3*y**2 - y**2 - y**2 - 4*y. Let v(q) = 8*q + 1 + 108*q**2 - 202*q**2 + 103*q**2. Let d(s) = -7*r(s) - 4*v(s). Determine n so that d(n) = 0.\n-2\nSuppose -55 = 3*u - 70. Let y(k) be the third derivative of 0 + 9*k**2 + 1/6*k**3 + 5/48*k**4 + 0*k + 1/30*k**u + 1/240*k**6. Factor y(f).\n(f + 1)**2*(f + 2)/2\nLet q(t) be the first derivative of -t**6/2160 - t**5/240 - t**4/72 - 17*t**3/3 - 8. Let s(k) be the third derivative of q(k). Suppose s(i) = 0. What is i?\n-2, -1\nSuppose y - 5 = 0, -2*h = h - 4*y + 2. Let q = h + -1. Factor 7*d**4 - 18*d**3 - d**q - 8*d + 8*d**2 + 3*d**2 + 9*d**2.\n-d*(d - 2)**3*(d - 1)\nLet p(o) be the third derivative of o**7/7560 + o**6/1080 + o**5/360 + 5*o**4/24 + 5*o**2. Let y(r) be the second derivative of p(r). Factor y(b).\n(b + 1)**2/3\nLet t(w) be the third derivative of 1/72*w**5 + 0*w**4 - 31*w**2 + 0*w**3 - 1/144*w**6 + 0*w + 0. Factor t(k).\n-5*k**2*(k - 1)/6\nSuppose -2 = a + 2, 132 = -2*c - a. Let o = -318/5 - c. Let -o + 4/5*b - 2/5*b**2 = 0. Calculate b.\n1\nLet g(n) be the third derivative of n**6/300 + 4*n**5/75 - 19*n**4/60 + 2*n**3/3 + 44*n**2. Factor g(c).\n2*(c - 1)**2*(c + 10)/5\nFactor 13*x**3 - 3*x**3 - 8*x**3 - 6*x + 14*x**2 - 4*x**3 - 6*x.\n-2*x*(x - 6)*(x - 1)\nLet s(a) be the first derivative of 1/3*a**3 - 1/5*a**5 - 1/2*a**2 + 1/4*a**4 + 0*a - 13. Suppose s(l) = 0. What is l?\n-1, 0, 1\nLet c(n) = -19*n**3 + 80*n**2 + 55*n. Let f(t) = 10*t**3 - 40*t**2 - 30*t. Let k(m) = -6*c(m) - 11*f(m). Factor k(x).\n4*x**2*(x - 10)\nLet r be 10/12*140/2800. Let y(h) be the third derivative of r*h**4 + 0 + 0*h - 1/12*h**3 + 10*h**2 - 1/120*h**5. Find n, given that y(n) = 0.\n1\nLet h(j) be the second derivative of j**4/66 + 52*j**3/33 + 676*j**2/11 + 56*j. Factor h(u).\n2*(u + 26)**2/11\nLet j be 6/9 - 3/(27/(-156)). Let v = j - 16. Factor -2/5*l**4 - 2/5*l**3 + 2/5*l**v + 0 + 2/5*l.\n-2*l*(l - 1)*(l + 1)**2/5\nLet x(v) be the third derivative of v**7/490 - v**6/35 + v**5/28 + v**4/4 - 2*v**2 - 24. Find m such that x(m) = 0.\n-1, 0, 2, 7\nLet f be (-3 - -6)*((-22)/(-33) - 0). Factor -2/17*i**f + 10/17*i - 12/17.\n-2*(i - 3)*(i - 2)/17\nSuppose 166/13*t**4 + 112/13 - 60/13*t + 66/13*t**3 - 6/13*t**5 - 278/13*t**2 = 0. What is t?\n-1, 2/3, 1, 28\nLet k(p) be the second derivative of -p**6/105 - 11*p**5/35 - 24*p**4/7 - 128*p**3/21 + 1024*p**2/7 + 210*p. Factor k(y).\n-2*(y - 2)*(y + 8)**3/7\nSolve 0 + 5/2*i**2 - 95/2*i = 0.\n0, 19\nLet g(z) be the first derivative of z**6/180 - z**5/27 + z**4/36 + 43*z**2/2 - 26. Let n(i) be the second derivative of g(i). Factor n(s).\n2*s*(s - 3)*(3*s - 1)/9\nLet h(l) = l**3 + 1. Let o(s) = 6*s**3 - 87*s**2 + 84*s + 3. Let p(i) = -3*h(i) + o(i). Factor p(d).\n3*d*(d - 28)*(d - 1)\nLet r(o) = o. Let t be r(3). Suppose t*w = 5*w - 4. Solve l**2 - 3 + 7 - 3*l**3 + 0*l + 10*l**w - 12*l = 0 for l.\n2/3, 1, 2\nLet o = 1/1535 + 1227/1535. Find g, given that -12/5 - o*g**2 + 16/5*g = 0.\n1, 3\nLet v be (805/(-70) + (-10)/(-4))*(-1)/6. Determine f, given that -15/4*f**2 + 0 + 27/4*f**3 - 21/4*f**5 + 15/4*f**4 - v*f = 0.\n-1, -2/7, 0, 1\nLet l(i) = -15*i**2 - 210*i + 205. Let k(z) = 17*z**2 + 212*z - 205. Let g(v) = -5*k(v) - 6*l(v). Solve g(j) = 0 for j.\n-41, 1\nLet i = -916/65 + 72/5. Factor -i*o + 2/13 + 2/13*o**2.\n2*(o - 1)**2/13\nLet s be 2/2*(-5 + 3 - -2). Suppose s = -r - 3*r + 2*r. Factor r + 0*z + 4/5*z**2 - 2/5*z**3.\n-2*z**2*(z - 2)/5\nSuppose -3*q + 110 = l, 4*q = q + 2*l + 113. Let 3*a**3 - 4*a**2 + 9 + 21*a - 18*a**2 + q*a**2 = 0. What is a?\n-3, -1\nLet m(k) be the first derivative of -k**4/48 + k**2/8 - 13*k - 4. Let b(v) be the first derivative of m(v). Factor b(n).\n-(n - 1)*(n + 1)/4\nLet p be (8/(-112)*12)/((-6)/21). Let -21/4*f - 3/2*f**p - 9/2 + 27/4*f**2 = 0. Calculate f.\n-1/2, 2, 3\nLet g(o) be the first derivative of -o**7/14 - 2*o**6/5 - 9*o**5/10 - o**4 - o**3/2 + 8*o - 5. Let c(v) be the first derivative of g(v). Factor c(k).\n-3*k*(k + 1)**4\nLet w = 16/83 + 4402/415. Suppose -108/5*c**3 - 12/5*c - 81/5*c**4 - w*c**2 - 1/5 = 0. Calculate c.\n-1/3\nLet r(t) be the second derivative of -2*t**6/15 + t**4/3 + 36*t. Factor r(l).\n-4*l**2*(l - 1)*(l + 1)\nLet c(p) be the third derivative of p**6/420 + 19*p**5/105 - p**4/21 - 152*p**3/21 - 723*p**2. What is u in c(u) = 0?\n-38, -2, 2\nLet l(d) = -5*d**4 - 17*d**3 + 64*d**2 - 6*d - 78. Let b(p) = -7*p**4 - 17*p**3 + 66*p**2 - 7*p - 77. Let m(a) = 2*b(a) - 3*l(a). Find h such that m(h) = 0.\n-20, -1, 2\nFactor 0*m**4 - 2*m**4 + 55*m**2 + 15*m**3 + 3*m**4 - 29*m**2.\nm**2*(m + 2)*(m + 13)\nLet p(l) be the first derivative of l**5/20 - 33*l**4/16 + 21*l**3/4 - 31*l**2/8 - 923. Let p(n) = 0. Calculate n.\n0, 1, 31\nLet x be 2/4 + 14/4. Suppose p + 29 = x*j, 0 = j - p - 7 - 4. Solve -7*k + k + 1 + 3 - k**4 - k**4 + j*k**3 - 2*k**2 = 0.\n-1, 1, 2\nSuppose -z = -7*z. Solve 2*n**5 + 2*n**5 + 12*n**3 + z*n**4 + 12*n**4 + 4*n**2 = 0 for n.\n-1, 0\nLet v(p) be the second derivative of 29*p**7/42 + 9*p**6/10 - 31*p**5/20 - 9*p**4/4 + p**3/3 - 168*p. Find b such that v(b) = 0.\n-1, 0, 2/29, 1\nSuppose -197*l**2 + 313*l**2 - 396*l - 662*l**2 - 8*l**4 - 200*l**3 = 0. Calculate l.\n-22, -3/2, 0\nLet n = -12 - -17. Suppose 0 = -8*a + 6*a + 4. Suppose 0*j - n*j + 3*j + a*j**4 - 6*j**3 + 6*j**2 = 0. What is j?\n0, 1\nSolve 2*x**3 - 689*x + 2*x**3 + 689*x - 53*x**2 + 9*x**2 = 0 for x.\n0, 11\nLet b(m) be the first derivative of -12 + 1/16*m**2 + 0*m**3 - 1/32*m**4 + 0*m. Factor b(h).\n-h*(h - 1)*(h + 1)/8\nLet x(d) = 2*d**3 - d**2 + d + 1. Let o(c) = 12*c**3 + 23*c**2 - 131*c + 149. Let g(n) = o(n) - 5*x(n). Determine l, given that g(l) = 0.\n-18, 2\nLet x(t) = -19*t - 624. Let l be x(-33). Factor 0 + 1/3*o**l + o**2 + 2/3*o.\no*(o + 1)*(o + 2)/3\nLet u(j) be the first derivative of -18/5*j**5 - 22 + 239/8*j**4 - 4*j - 15*j**2 - 27/4*j**6 - 9*j**3. What is w in u(w) = 0?\n-2, -2/9, 1\nLet i(h) be the first derivative of -h**5/420 - 13*h**4/84 - 169*h**3/42 + 14*h**2 + 28. Let x(s) be the second derivative of i(s). Factor x(l).\n-(l + 13)**2/7\nLet g(b) = -b**2 - b + 5. Let u(c) = c**2 + c - 2. Let l be -3*(75/(-9))/(-5). Let s(t) = l*u(t) - 2*g(t). Factor s(i).\n-3*i*(i + 1)\nLet 4/3 + 2/3*s - 2*s**2 - 2/3*s**3 + 2/3*s**4 = 0. What is s?\n-1, 1, 2\nLet o = 1 + -4. Let g be 8/(-2)*3/9*o. Factor 1/3*f + 4/3*f**g + 0 + 1/3*f**5 + 2*f**3 + 4/3*f**2.\nf*(f + 1)**4/3\nSuppose 4*v - 20 = -8. Let d be v + 2 + 2*(-1)/1. Suppose -12/5 - 16/5*t**2 - 38/5*t + 2*t**d = 0. Calculate t.\n-1, -2/5, 3\nLet j = -484 + 490. Let g(o) be the first derivative of -4/55*o**5 + 0*o + 1/22*o**4 + 0*o**3 + 1 + 0*o**2 + 1/33*o**j. Find p such that g(p) = 0.\n0, 1\nFactor 22/3*s**2 - 2/3*s**3 - 24*s + 24.\n-2*(s - 6)*(s - 3)*(s - 2)/3\nSuppose -4*f + 304 = -2*p, 0 = f + 2*f + 4*p - 206. Let x = 76 - f. Factor 1/2*m**2 - 3*m**3 - x*m**5 + 9/2*m**4 + 0 + 0*m.\n-m**2*(m - 1)**2*(4*m - 1)/2\nFind l such that 398 - 44*l + 367 - 849 - l**2 = 0.\n-42, -2\nLet p(i) be the third derivative of 5*i**8/112 + 13*i**7/42 + 5*i**6/12 - 5*i**5/6 - 65*i**4/24 - 5*i**3/2 - 2*i**2 - 13*i. Let p(y) = 0. Calculate y.\n-3, -1, -1/3, 1\nSuppose -3*q - 9 "], [") 5\na\nLet b = -148/45 - -26/9. Let k = 11 - 11.11. Let m = k + -0.19. What is the second biggest value in -4, b, m?\nb\nLet r = -1 - -1.2. Let w = -3.2 + r. Which is the third biggest value? (a) 4 (b) w (c) -2/7\nb\nSuppose -h = 3*y - 2*y + 4, -8 = -y + 2*h. Let j = y + 0. Suppose 0 = -4*s - 10 + 30. What is the second biggest value in j, -1, s?\nj\nLet d(v) = -v**3 + 6*v**2 - 6*v + 3. Let g be d(5). Let p be g*(-1)/(1/(-2)). Let q = 71 - 353/5. Which is the second biggest value? (a) p (b) -0.5 (c) q\nb\nLet i(x) = x**2 + x + 1. Let s be i(0). Let k be 2 - 10/14 - s. Let v = -352/5 - -71. What is the second smallest value in v, -2, k?\nk\nLet q = -2 + 2. Let f = -12.9 + 0.9. Let r = f + 8. Which is the second smallest value? (a) r (b) q (c) 1/4\nb\nLet k = 2 + -7. Suppose 5*x = y + 15, y + 2*x = -2*x + 12. Suppose -4*n - 5 + 17 = y. Which is the second smallest value? (a) k (b) 2 (c) n\nb\nLet z = 22 - 14. Let w = z + -6. Suppose s = i + 1, 0 = -5*s + 2*s + 4*i + 4. Which is the third smallest value? (a) s (b) w (c) 0.3\nb\nSuppose 9 = -t + 33. Let s = 93/4 - t. Which is the biggest value? (a) 0.3 (b) -1 (c) s\na\nLet v = 28 - 27. Which is the fourth smallest value? (a) -3 (b) v (c) -2/9 (d) 0.5\nb\nLet i = -0.1 + -0.9. Let n(y) = -y**2 - 4*y + 1. Let d be n(-4). Let g be d + (-2)/((-18)/(-15)). Which is the biggest value? (a) 3/2 (b) i (c) g\na\nLet u = 4/161 + 6/23. Which is the third biggest value? (a) 3 (b) u (c) 5/7 (d) 5\nc\nLet j = -0.3 - -0.6. What is the third biggest value in 1/6, j, 1?\n1/6\nSuppose -9*l + 8 = -5*l. What is the second smallest value in 0.1, -1, l?\n0.1\nLet i = 0.1 - 4.1. Let s = 6 - 5. Which is the smallest value? (a) -0.5 (b) i (c) s\nb\nLet s = 18.1 + 3.9. Let m = s - 21.8. Which is the third biggest value? (a) m (b) 5 (c) 4\na\nLet j = 7 + -6. Suppose -5*p - 2*d = -0*d + 17, -3*p + 2*d - 7 = 0. Let t be (1 + -4)*(-4)/p. Which is the biggest value? (a) -3 (b) j (c) t\nb\nLet d(i) = i + 3. Suppose -t = 2*t + 9. Let f be d(t). Which is the smallest value? (a) 0.2 (b) f (c) -5\nc\nLet s = -0.12 + -4.88. What is the smallest value in -4, 0.4, s?\ns\nLet f = 50 - 399/8. Which is the biggest value? (a) -1 (b) f (c) 4/9\nc\nLet t be 275/(-75) - (-2)/3. What is the third biggest value in 0.1, -2/5, t?\nt\nLet u = -11.3 - -12. Let y = u + -0.7. Which is the third biggest value? (a) -3 (b) y (c) -2\na\nLet d = 13 + -8. Suppose 43 = -q + 6. Let o = q - -260/7. What is the second biggest value in o, d, 1/4?\n1/4\nLet i be (-26)/(-22) + 4/(-22). What is the third biggest value in -2/5, -4/3, i?\n-4/3\nLet w = -0.11 - -5.11. Let u = 2 - 0. Suppose 2*g - z - 2 + 1 = 0, u*z = 3*g. Which is the smallest value? (a) -0.1 (b) w (c) g\na\nLet r(g) = -g**2 - 5*g + 4. Let y be r(-6). Let u be y/4 + (-2)/4. Let k = -6 - -37/6. Which is the second smallest value? (a) u (b) 1 (c) k\nc\nLet s = -0.33 - 8.67. Which is the second smallest value? (a) -0.3 (b) s (c) 2\na\nLet u = -54 + 64. Which is the second smallest value? (a) 4 (b) u (c) -5\na\nLet m(h) = h**2 - 2*h. Let t be m(1). Let f = 0.01 + -0.51. Which is the smallest value? (a) f (b) t (c) 0\nb\nLet f = 6 + -6.7. Let j = f + 0.1. Let g = 0.3 + j. Which is the biggest value? (a) -1/7 (b) g (c) -0.1\nc\nLet c = -105522841373315/384 + 274800046420. Let u = 980345 - c. Let k = u + -1/128. What is the third biggest value in k, 3/5, -3?\n-3\nSuppose 0 = -4*v - 5 - 3. Let g be (4 + v)/(1/2). What is the biggest value in 0.5, g, 2?\ng\nLet y(n) = -2*n + 10. Let o be y(3). Let f be (4/(-6)*-3)/6. Which is the third biggest value? (a) f (b) o (c) -4\nc\nLet b = -0.115 - -0.515. What is the biggest value in -2/3, 3, b?\n3\nLet o = 16 - 16. What is the third biggest value in 4, o, -6?\n-6\nLet v = -75.8 - -76. What is the second biggest value in v, 3, -3?\nv\nLet m = 41/33 + -32/33. Which is the fourth smallest value? (a) -6 (b) -0.4 (c) 4 (d) m\nc\nLet k = -479/18 - -53/2. Which is the third smallest value? (a) -2 (b) k (c) -3\nb\nLet c be (-4 + 0)/(-11 - -14). What is the smallest value in 0, -5, c?\n-5\nLet a = -123 + 983/8. Let k = -25 - -24. What is the third smallest value in a, k, -3?\na\nLet w be (-13)/((-4)/(-16)*-2). Let t be (-152)/w + 3 - -3. Which is the smallest value? (a) 4 (b) t (c) 2/9\nb\nLet d be (-2)/12*(-3 - 0). Let u = -1/31 + -29/62. Which is the second biggest value? (a) d (b) -2/3 (c) u\nc\nLet u = 1.1 - 0.1. Let z = 127.98 + -130. Let o = z + 0.02. What is the second biggest value in o, u, -0.4?\n-0.4\nLet y be 0 + 4 + 276/(-60). Let c = -0.9 - 0.1. What is the third smallest value in y, c, -3?\ny\nLet k be (-4)/2*(0 + (-3)/(-9)). What is the third smallest value in -0.4, -0.3, k, 3?\n-0.3\nLet q = -108.51 + 109. Let p = -0.01 - q. Which is the second biggest value? (a) p (b) 4 (c) 1/5\nc\nLet o = 53 - 49. Which is the third biggest value? (a) 0.5 (b) 0.4 (c) o (d) -0.9\nb\nLet u = 29 + -28. What is the biggest value in -9, u, 3?\n3\nLet v = 0.24 - 0.3. Let l = 0.46 + v. What is the third smallest value in l, 3, 0.3?\n3\nSuppose f - 80 = 6*k - k, -4*f = 2*k + 32. Let x = 21 + k. What is the third biggest value in x, -0.3, 0.1?\n-0.3\nLet o = -28.4 + 30. Let f = -1.7 + o. Let l = -0.29 - 0.01. Which is the smallest value? (a) f (b) l (c) -0.4\nc\nLet q be 2/(-2 + -5*1). Let y = 5.3 + -5.1. Which is the second biggest value? (a) -3 (b) y (c) q\nc\nLet n = 13 + -7. Let f(v) be the second derivative of -v**3/6 + 11*v**2/2 + 2*v. Let p be f(n). Which is the third smallest value? (a) p (b) 1/7 (c) 4\na\nLet u be (6/(-9))/(33/9). Which is the third biggest value? (a) u (b) 20 (c) 0.3\na\nSuppose -15 + 6 = 3*w. Let o = -1 - -2. Suppose 0 = -u - o. Which is the smallest value? (a) u (b) -2/5 (c) w\nc\nLet u = 2 - 1. Let h = -40 - -39.73. Let j = h - -0.07. Which is the second smallest value? (a) u (b) j (c) -1/2\nb\nLet k(x) be the first derivative of 6*x**2 + 12*x - 3*x**2 - 2*x**2 - 3. Let o be k(-8). Which is the third smallest value? (a) o (b) -3 (c) -1/6\nc\nLet z(g) = g**2 + 7*g - 1. Let x be z(-6). Let j = x + 11. Which is the second smallest value? (a) -3 (b) 1/6 (c) j\nb\nLet j = 17 - 13. Which is the third biggest value? (a) -4 (b) j (c) 1/5\na\nSuppose 6*t + 3*h = 2*t - 15, t + 2*h = 0. Let i = -13 - -15. Let f be (2 + -1)/(i/t). Which is the second smallest value? (a) -0.2 (b) 1/2 (c) f\na\nLet i = -2.98 - 0.02. Let n = 3 + -3. What is the third biggest value in i, n, -4/7?\ni\nSuppose -h = 5*m - 10, -5*h - m - m + 4 = 0. Let n = -25 + 35. Let g = -10.5 + n. What is the third smallest value in g, 2/9, h?\n2/9\nSuppose 0 = -j - 4*j - 25. Let q = -9 - -9. Let i = -1 - -1.4. Which is the smallest value? (a) q (b) i (c) j\nc\nLet k = -28 - -27.5. Suppose 5*x - 22 = -7. Let w be (2/10)/(x/5). Which is the biggest value? (a) w (b) k (c) -2/7\na\nLet g be 0 + 7/(21/6). Suppose z = -0*z + 3*l + 15, g*z - 22 = 4*l. What is the smallest value in -0.3, z, -1/2?\n-1/2\nLet u = -1/25323 + 1578481/354522. Let w = -30/7 + u. Let y = -4095/17 - -241. Which is the second smallest value? (a) w (b) y (c) -7\nb\nLet m = -11/3 + 4. Let t = -0.033 - -0.033. Let w be 64/(-126) + 2/9. What is the smallest value in t, m, w?\nw\nLet o(m) = m**3 + 9*m**2 + 7*m - 3. Let k be o(-8). What is the biggest value in k, -0.03, 3?\nk\nSuppose -5*c - 3 = f, 0*c = -c + 5*f + 15. Let h = 1 - 0.7. What is the second biggest value in -5, h, c?\nc\nLet z be (-4 - 13/(-3))/3. What is the smallest value in -0.1, -2, -3, z?\n-3\nSuppose 0 = -w - 11 + 12. Which is the second smallest value? (a) -4 (b) 7 (c) -0.2 (d) w\nc\nLet b = 14.4 + -13.4. What is the second biggest value in b, -0.2, 5, -0.3?\nb\nLet s = -0.3 + -0.11. Let r = s - -0.01. Which is the third biggest value? (a) 0.5 (b) r (c) 2\nb\nLet b = 50/9 - 52/9. What is the second biggest value in 3, 5, b?\n3\nLet k = -23 + 22.6. Which is the second smallest value? (a) -0.1 (b) k (c) -1/2\nb\nSuppose 2*b + 6 = 5*b. What is the third biggest value in 4, 5, b?\nb\nLet a(s) = -s + 2 + 1 + 4. Let i be a(7). Let n = -15.9 - -16. What is the second smallest value in -0.1, i, n?\ni\nLet n = -153 - -153.04. What is the second smallest value in -1, n, 2?\nn\nLet t be 39/(-182) - 2/(-4). Let r = -3 - -7. Which is the second smallest value? (a) r (b) -0.2 (c) t\nc\nLet u = -403/"], [" hundred thousand.\n-1700000\nLet z = -1137841 + -56959. Round z to the nearest 100000.\n-1200000\nLet p be ((-9990)/20)/9*30. Round p to the nearest one thousand.\n-2000\nLet s = 73 + -271. Let b = -195.69 - s. What is b rounded to 1 decimal place?\n2.3\nLet m = 14509852.5225202 + -14473599.5812. Let z = m - 36371.9413. Let s = z - -119. What is s rounded to 6 decimal places?\n0.00002\nLet y = -168.6648 + 144.66. Let s = 24 + y. What is s rounded to 3 decimal places?\n-0.005\nLet r = -23.2 - -3.1. Let q = 20.099702 + r. What is q rounded to four decimal places?\n-0.0003\nLet x = 1272.93698 - 1273. Round x to 3 decimal places.\n-0.063\nLet h = -0.18 - -0.78. Let y = h + -0.5918. Round y to 3 decimal places.\n0.008\nLet l = -85.9 + 92.34. Round l to 0 dps.\n6\nLet d = -149.529 - 23.581. Round d to the nearest 10.\n-170\nSuppose -2*v = -5*a + 16, 6 + 12 = v + 4*a. Suppose -4*q = 0, -v*s + 0*q + 4*q = -18. Let z be -960*(1875/s)/(-1). Round z to the nearest 1000000.\n0\nLet i = -406 - -325.5. Round i to the nearest integer.\n-81\nLet t = -64.9898 + 65. What is t rounded to 3 decimal places?\n0.01\nLet k = 3 + -3.16. Let p = -0.12 + k. Let z = p - -0.27978. Round z to four decimal places.\n-0.0002\nLet l(w) = 12578*w**3 - 4*w**2 - 26*w - 16. Let m be l(-8). What is m rounded to the nearest 1000000?\n-6000000\nLet l = 42.900004986 - 42.9. What is l rounded to seven dps?\n0.000005\nLet b = -195.69998911 - -195.7. Round b to 7 dps.\n0.0000109\nLet t = 0.356 + 10.064. Round t to 1 dp.\n10.4\nLet b = -1.8 + 1.79489. Round b to 4 decimal places.\n-0.0051\nLet w be (-2)/((-46197)/6600 + 7). What is w rounded to the nearest one hundred?\n-4400\nLet d be (-25)/10*(-8)/10. Suppose 2*f = -5*i + 999975, -624319 - 875671 = -3*f - d*i. Round f to the nearest one hundred thousand.\n500000\nLet a = 13.6 - -120.4. Let h = a - 133.99999652. What is h rounded to 7 decimal places?\n0.0000035\nLet k = 0.308 + 2.782. Let g = k + 23.31. What is g rounded to zero dps?\n26\nSuppose 53695573 = 5*q + 6195573. Suppose -3*i - q = -13*i. Round i to the nearest 1000000.\n1000000\nLet v = -0.2 - -5.2. Let d = 4.998 - v. Round d to three decimal places.\n-0.002\nLet x = 1576 - 1576.0012732. Round x to five dps.\n-0.00127\nLet d = 29.51 - 30. Let j = d - -0.427. What is j rounded to one decimal place?\n-0.1\nLet y = -187 - -97. Let m = 90.00000078 + y. What is m rounded to seven dps?\n0.0000008\nLet m(z) = -38 + 546*z - 44*z + 189*z + 100*z. Let k be m(8). Round k to the nearest one thousand.\n6000\nLet a(x) = x**3 + 3*x**2 + 6. Let n be (-62)/(-3) - 7/(-21). Let i = n + -26. Let r be a(i). Round r to the nearest ten.\n-40\nLet l be (64/(-40))/((-4)/10). Suppose -l*x = p - 5*p + 472, 0 = 4*p + 5*x - 481. What is p rounded to the nearest 10?\n120\nSuppose 3*h - i - 3264047 = -549047, 0 = -i. What is h rounded to the nearest one hundred thousand?\n900000\nLet i(v) = 286*v - 100. Let m be i(10). Round m to the nearest one hundred.\n2800\nLet f = 700 + -700.0000393. Round f to 5 dps.\n-0.00004\nLet x = -0.338 + 0.33800254. What is x rounded to 6 dps?\n0.000003\nLet z = -0.121 - -0.065. Round z to two decimal places.\n-0.06\nLet z = 7.71331 - 7.71. Round z to 3 decimal places.\n0.003\nLet n = -2456344321.00000046 + 2456344359. Let g = n - 38. What is g rounded to 7 dps?\n-0.0000005\nSuppose -2*h = -2*k - 4, 4*k - 6 = -2*h + 10. Suppose -2*f = -4*b + 6870, b - 5135 = -k*b + 5*f. What is b rounded to the nearest one hundred?\n1700\nLet z = -3138 + 3137.97126. Let a = z - -13.02324. Let m = a - 13. What is m rounded to 3 dps?\n-0.006\nLet j = 227 + -227.0398. Let y = -4 + 3.96. Let a = y - j. What is a rounded to three dps?\n0\nLet r = -0.4031 - -0.255. Round r to one dp.\n-0.1\nLet x = 2591.6 + -2017. What is x rounded to the nearest 100?\n600\nSuppose 0*d = -2*d + 10, 0 = -s - 2*d - 85490. Suppose 2*h = h + 3. Let b be (s/7)/h*140. Round b to the nearest 100000.\n-600000\nLet u = -92 + 139. Let d = 46.7125 - u. Let c = d + 0.3. What is c rounded to 3 decimal places?\n0.013\nLet s = 0.2151 + -0.0101. Round s to two decimal places.\n0.21\nLet v = -2.18 - 129.82. Let d = -132.221 - v. What is d rounded to 2 dps?\n-0.22\nLet o = -212 - -211.9999952. Round o to 6 dps.\n-0.000005\nSuppose 0 = -30*w + 14*w + 25355200. What is w rounded to the nearest one hundred thousand?\n1600000\nLet b = -19.31978 + -5.68127. Let q = -25.34 + 0.34. Let j = q - b. Round j to four decimal places.\n0.0011\nLet i = -22380512 - -61550512. What is i rounded to the nearest one million?\n39000000\nLet f = -226 + 94. Let q = f + 132.0115. What is q rounded to 3 decimal places?\n0.012\nSuppose -41208 - 366792 = -8*b. Let t be (b/14)/(-3*4/840). What is t rounded to the nearest 10000?\n-260000\nLet y(i) = -2 - 2 + 1405*i**3 + 5*i**2 + 0 + i + 0. Let q be y(4). What is q rounded to the nearest 10000?\n90000\nLet s = -45031107 + 207931107. What is s rounded to the nearest 1000000?\n163000000\nLet p = 65 + -29. Let z = -1.39 + -33.97. Let a = p + z. Round a to 1 dp.\n0.6\nLet v = -3.05 + 3.04999977. What is v rounded to seven dps?\n-0.0000002\nSuppose -29*g - 580000 = -0*g. Round g to the nearest 100000.\n0\nLet z be (5 - 39/9)*10*-594000. Round z to the nearest one million.\n-4000000\nLet m = -18.4 - 42. Let k = -44 - m. What is k rounded to the nearest integer?\n16\nLet y = -44.1 + 386.3. What is y rounded to the nearest 10?\n340\nLet y be -317*(-5)/(-10)*80. Round y to the nearest one thousand.\n-13000\nLet v(p) = p + 5. Let a be v(-9). Let d be (-262)/(-6) + (44/(-12) - a). Round d to the nearest ten.\n40\nLet u = 414.547 - 414. What is u rounded to 2 dps?\n0.55\nLet x = 56 - 55.32. Let t = x + 0.19. Round t to one decimal place.\n0.9\nLet k = 0.008 + 4.782. What is k rounded to 0 dps?\n5\nLet k = 4 - -59. Let j = -563 + k. What is j rounded to the nearest 1000?\n-1000\nLet u = 283.475 - 287. Let n = 17.4 - u. Let c = n - 21. What is c rounded to two decimal places?\n-0.08\nLet q = -1513 - -340. What is q rounded to the nearest one hundred?\n-1200\nLet c = -65 - -78. Let a = 9.5 + c. What is a rounded to 0 decimal places?\n23\nLet o = 434 - 200. Let t = o - 234.000197. Round t to 5 decimal places.\n-0.0002\nLet w = -3.72 - -3.719999358. What is w rounded to 7 decimal places?\n-0.0000006\nLet n = 26 + -21. Let v be (-50*225)/((-1)/8). Suppose v = 5*w + 3*o - 2*o, n*w - 90000 = 4*o. What is w rounded to the nearest ten thousand?\n20000\nLet h = -0.3 + 8.3. Let x = -8.25 + h. Let g = x - -0.24995. What is g rounded to 4 decimal places?\n-0.0001\nSuppose -x + 2 = -0*x. Suppose x*d + 28 = 3*d. Let t be 4/7 - 2172/d. What is t rounded to the nearest ten?\n-80\nLet w be ((-86)/3)/((-20)/30). Suppose -193 = 3*p - w. Round p to the nearest one hundred.\n-100\nLet s = 1.165 + 49.535. Round s to zero dps.\n51\nSuppose -8*k - 29260 = -k. Round k to the nearest 100.\n-4200\nLet a = -14 - 29. Let j = a - -42.9999996. What is j rounded to 6 decimal places?\n0\nLet j = -4 + 8. Suppose 3*f - j = 1148. Suppose -4*x - 2*m - m + f = 0, 192 = 2*x - m. Round x to the nearest 10.\n100\nSuppose 2*k - 36322461 = -7*k. Let l = k + -6535829. What is l rounded to the nearest 1000000?\n-3000000\nLet h(n) = -449*n**2 - 2*n + 1. Suppose 3 = -2*x - 7. Let l = x - -6. Let b be h(l). What is b rounded to the nearest 100?\n-500\nLet k = 24245.0059756 + -24245. Let s = -0.006 + k. Round s to 6 decimal places.\n-0.000024\nLet z = -0.6 - 1.136. Round z to 1 dp.\n-1.7\nLet l = 94.897 - -0.103. Let h = -371374.0126 - -371279. Let a = h + l. What is a rounded to 3 decimal places?\n-0.013\nLet g = -2.83045 + 2.92. Round g to 3 decimal places.\n0.09\nLet q = 6.7 + -6.35. Let f = 1 + q. Round f to zero dps.\n1\nLet k(g) = -615*g**3 - g**2 + 1. Let m be 4/6*(-9)/(-6). Let z be k(m). Let i = z - 95. What is i rounded to the nearest one hundred?\n-700\nLet o = -834.0094 - -834. Round o to 3 dps.\n-0.009\nLet p = -1080786990472921359.00000089 - -1080786972425766744. Let s = -18047154523 - p. Let j = 92 - s. Round j to 7 dps.\n-0.0000009\nLet c = -1.4396 - 590.4604. What is c rounded to the nearest ten?\n-590\nLet y = -3695.7401679 + 2774.74016371. Let q = y + 921. Round q to 7 dps.\n-0.0000042\nLet s = -120 + 125.1. Let a = 30.1 - s. Let u = a - 24.23. Round u to one decimal place.\n0.8\nLet s = 5.3 - 12.3. Let m = -45917542.0000046 + 45917535. Let z = s - m. What is z rounded to six decimal places?\n0.000005\nLet t = -1022 + 932.4. Let l = 87 + "]]
\ No newline at end of file
{"results": {"pile_dm-mathematics": {"word_perplexity": 1.0002103357887342, "byte_perplexity": 1.0000488989957517, "bits_per_byte": 4.8897800234842796e-05}}, "versions": {"pile_dm-mathematics": 0}}
\ No newline at end of file
{"results": {"pile_dm-mathematics": {"bits_per_byte": 6.176600873627999e-05, "byte_perplexity": 1.0000617679162955, "word_perplexity": 1.0002875035042451}}, "versions": {"pile_dm-mathematics": 0}}
\ No newline at end of file
4baa6ccdc9e3aa9921675ab4400d5e89d7b546b844a8ea28f6461d649066418a
\ No newline at end of file
[["Dipak,\n\nAs you requested, here are the West Desk's forecasts for California Reciepts \nminus instate production by month. They are broken down into delivery points \nonto Socal and PGE's system. Please let me know if you have any questions. \nThanks.\n\nMat"], ["----- Forwarded by Jeff Dasovich/NA/Enron on 12/27/2000 10:55 AM -----\n\n\tJeff Dasovich\n\tSent by: Jeff Dasovich\n\t12/26/2000 03:15 PM\n\t\t\n\t\t To: Jeff Dasovich/NA/Enron@Enron, Alan Comnes/PDX/ECT@ECT, Dennis \nBenevides/HOU/EES@EES, Eric Letke/DUB/EES@EES, George McClellan/HOU/ECT@ECT, \nHarry Kingerski/NA/Enron@ENRON, James D Steffes/NA/Enron@ENRON, Jennifer \nRudolph/HOU/EES@EES, Joe Hartsoe/Corp/Enron@ENRON, Kevin \nMcGowan/Corp/Enron@ENRON, Lisa Yoho/NA/Enron@ENRON, Lysa Akin/PDX/ECT@ECT, \nMary Hain/HOU/ECT@ECT, Paul Kaufman/PDX/ECT@ECT, Richard \nShapiro/NA/Enron@ENRON, Roger Yang/SFO/EES@EES, Sandra \nMcCubbin/NA/Enron@ENRON, Sarah Novosel/Corp/Enron@ENRON, Scott \nStoness/HOU/EES@EES, skean@enron.com, Stuart Staley/LON/ECT@ECT, Susan J \nMara/NA/Enron@ENRON, Vicki Sharp/HOU/EES@EES, Wanda Curry/HOU/EES@EES, \nMDay@GMSSR.com, Robert C Williams/ENRON_DEVELOPMENT@ENRON_DEVELOPMENT, Mike D \nSmith/HOU/EES@EES\n\t\t cc: \n\t\t Subject: DRAFT talking points for California PUC Hearings on the 27th/28th\n\n\n\t\n\n\nAttached is a draft of the talking points for the Commission's hearings. Few \npoints:\nOur time is likely to be limited to 5-10 minutes.\nMike Day, our outside counsel, will make the presentation on our behalf.\nMike Day is fleshing out the legal details of our presentation and he will \nforward that along for folks review later today.\nComments can be forwarded to me via email, pager (888.916.7184), voicemail \n(415.782.7822), or home (415.621.8317).\nWe will finalize the message points on tomorrow's daily call (10 AM CST). \nThe call in number is 800.713.8600. Code is 80435.\nThe Commission's hearings begin tomorrow at 10 AM (PST)."], ["Most people want to work well with others. But most were raised in families \nwhere conflict did not bring them closer. We come to work with two habitual \nways of dealing with difficult relationships -- to attack or to withdraw. We \ntend to avoid addressing differences with our co-workers and especially with \nour supervisors. Information is not shared, dangers are not discussed, and \nmistakes are ignored. The individual can become overwhelmingly stressed. \nThe organiziation suffers loss of respect and trust and risks financial \nloss. The Successful Working Relationships seminar series provides a range \nof practical tools and techniques that will help you build a more supportive \nenvironment in which you will actually look forward to working each day. \n\n\nSuccessful Working Relationships - Valuing Differences\nOctober 3, 2000 8:30am -4:30pm in EB552 $600.00 \n\nOrganizations are like \"step-families\". People come together with different \nbackgrounds, perceptions, and preferences. These different habits of \nattitude and behaviour can be the sources of much confusion and frustration. \nUsing a unique approach to the Myers-Briggs Type Indicator (MBTI) through \nentertaining examples and informative exercises, this program teaches the \nstrengths inherent in the various personality types. This module emphasizes \nthe importance of not being pigeonholed in any particular category, but \nrather developing your own full range of potential.\n\n\nSuccessful Working Relationships - Creating Understanding\nNovember 3, 2000 8:30am -4:30pm in EB552 $450.00\n\nPeople will tolerate a disagreement whey they feel understood but will not \ntolerate not be misunderstood. Respect occurs when co-workers are able to \neliminate misunderstandings and successfully resolve conflicts - together. \nUsing a unique and powerful approach this module will help you actually \nreduce the resistance of others to your point of view.\n\n\nFor registration, please click here () to go directly into the Development \nCenter \"Ernie\", or call (713) 853-0357."], ["just b/c i am saving myself doesn't mean you need to attack me."], ["attached is the month end close document for Gas Settlements:\n\n \n\nthe first mass draft run is tomorrow, Nov 15 for ENA Sales/Supply at 7.00pm.\nMichael Cuccia will be monitoring the mass drafts for this month end.\n\nthanks,\nAnwar\n\n -----Original Message-----\nFrom: \tMelethil, Anwar \nSent:\tTuesday, November 13, 2001 3:01 PM\nTo:\tBaxter, Bryce; Hiatt, Wendy; Jaquet, Tammy; Lakho, Shahnaz; Mcclure, Mark; Pinion, Richard; Wynne, Rita\nCc:\tCuccia, Michael; Laurel, Robert; Mallak, Mutaz; Martinez, Danny; Neal, Steve; Pena, Matt; Roberts, Steve; Smith, Regan M.; SQL_MAIL; Stokes, Darren; Ward, Bob; Warner, John; Zwiers, Jeff\nSubject:\tUnify Gas Month end Close - November 2001\n\nPlease review the attached 'month end close' document and let us know if you would like to make any changes.\n\n << File: Month End Close -November.doc >> \n\ni will be sending out this document tomorrow to the other Business Leads who are not in this list.\n\nthanks very much.\n\nCheers,\nAnwar"], ["Attached is a revised draft of the above, blacklined against our prior draft \ndated 3/6/01. When the draft is ready for distribution to Nevada Power, a \nnew blackline will need to be generated showing all changes from their draft \nas this one only shows the changes from our recent call. Andrea is still \nworking on a short memo on how the transmission credits are calculated and \nmay have a few more changes to one or two sections, but I thought I would get \nthis draft out so you can be looking at it. As I recall, Dale was also going \nto see if he could find some additional definitional or other language here \nand there so please send that if it could be located. We did make revisions \nto at least two of those items, Emergency and Abnormal Condition so you might \nlook those over. We also still need to hear from David Marshall on the \ninsurance provisions. The name of the entity is probably not correct (as it \nis not a Cogen and may not exist yet?) so I put it in brackets (it is \ndefinitely not correct if it is ultimately to be the same entity as owns the \nexisting facility). If you want to provide the notice parties/addresses we \ncan fill that in now as well. We still have to work through the exhibits but \nthat is probably best put off until Nevada Power has provided most of the \ninformation from their side. Let me know when you'd like to discuss. \nThanks. JM\n\nJohn Maas\nLeBoeuf, Lamb, Greene & MacRae\n303-291-2614\njmaas@llgm.com\n\nThe information transmitted is intended only for the person or entity to \nwhich it is addressed and may contain confidential and/or privileged\nmaterial. Any review, retransmission, dissemination or other use of, or \ntaking of any action in reliance upon, this information by persons or\nentities other than the intended recipient is prohibited. If you received \nthis in error, please contact the sender and delete the material from any\ncomputer.\n\n\n - LVCIA.doc"], ["Shane,\nLaurel and I met with Sara Shackleton, Legal, yesterday.\n\nSara provided the following updates for Australia ISDA Agreements:\nNational Australia Bank Exectued 1/3/2000 on our side, received executed \nback from them 3/3/2000\nWest Pac Our end done, sent to them. Susan Flynn to follow-up to id where \nin process currently.\nANZ Bank We need to know the exact name of the entity we want the agreement \nwith so we can apply to the credit group to approve getting an \nagreement in place. \nThanks. Sheila"], ["i dont hate it. i'm just tired of it.\nwhat school in denver? do you like working @ enron?\ndo you know a john franklin or sonya there?\n\n\n\n\n\n\n> i went to high school in denver. i have only lived\nhere for 2 years.\n> no wonder you hate houston. there is nothing up in\nnorth houston.\n>\n> > -----Original Message-----\n> > From: \tccates@mail.lbjs.com@ENRON\n> > [mailto:IMCEANOTES-\nccates+40mail+2Elbjs+2Ecom+40ENRON@ENRON.com] On\n> > Behalf Of Cori Cates <ccates@mail.lbjs.com>\n> > Sent:\tThursday, May 31, 2001 10:25 AM\n> > To:\tLenhart, Matthew\n> > Subject:\tRE:\n> >\n> > hey-\n> > i grew up in north houston (around the woodlands\narea)\n> > i've only live here for 2 years. where did you go\nto\n> > high school?\n> >\n> >\n> >\n> >\n> > > i live inside the loop here and usually don't\nleave\n> > unless i have to\n> > > golf. outside of the loop is pretty ugly. which\n> > part of houston did\n> > > you grow up in?\n> > >\n> > > > -----Original Message-----\n> > > > From: \tccates@mail.lbjs.com@ENRON\n> > > > [mailto:IMCEANOTES-\n> > ccates+40mail+2Elbjs+2Ecom+40ENRON@ENRON.com] On\n> > > > Behalf Of Cori Cates <ccates@mail.lbjs.com>\n> > > > Sent:\tWednesday, May 30, 2001 3:17 PM\n> > > > To:\tLenhart, Matthew\n> > > > Subject:\tRE:\n> > > >\n> > > > no i do not work for strip clubs!!!\n> > > > our 'in house' production department makes\n> > comercials\n> > > > for advertising companies; i.e. clubs,\nbars....and i\n> > > > did the voice work for them! h-town IS the\narmpit\n> > of\n> > > > america. i know, i've lived there all my\nlife. you\n> > > > cannot say it isn't dirty. especially after you\nsee\n> > a\n> > > > beautiful clean place like austin. but i'm glad\nto\n> > know\n> > > > that there are people who still love houston\ntoo.\n> > > >\n> > > > what's my stripper name?!! nice.\n> > > > -cori\n> > > >\n> > > >\n> > > >\n> > > >\n> > > >\n> > > > > you think houston is the armpit of the\nworld? i\n> > love\n> > > > it hear. the\n> > > > > weather sucks in the summer, but other than\nthat\n> > it\n> > > > is a blast. so you\n> > > > > do work for strip clubs huh? that is\ninteresting.\n> > > > what is your\n> > > > > stripper name?\n> > > > >\n> > > > > > -----Original Message-----\n> > > > > > From: \tccates@mail.lbjs.com@ENRON\n> > > > > > [mailto:IMCEANOTES-\n> > > > ccates+40mail+2Elbjs+2Ecom+40ENRON@ENRON.com]\nOn\n> > > > > > Behalf Of Cori Cates <ccates@mail.lbjs.com>\n> > > > > > Sent:\tWednesday, May 30, 2001 10:33 AM\n> > > > > > To:\tLenhart, Matthew\n> > > > > > Subject:\tRE:\n> > > > > >\n> > > > > >\n> > > > > > hey there- how's it goin?\n> > > > > >\n> > > > > > 4th st. is sort-of away from all the college\n> > > > > > crowd...it's pretty cool, i like it. if you\n> > were\n> > > > to go\n> > > > > > to 6th. 'the library' & 'the aquarium' are\ngood\n> > > > > > places. 'touche' is also pretty cool\n(flaming\n> > > > dr.pepper\n> > > > > > gimick).\n> > > > > > i work at 'lbjs broadcasting' there are six\n> > radio\n> > > > > > stations in the building. i work\nspecifically\n> > for\n> > > > > > 101X. it is an alternative rock station. i\n> > also\n> > > > make\n> > > > > > some commercials; if you listen to the radio\n> > here-\n> > > > > > that's me talking on the 'showpalace'\n& 'expose'\n> > > > > > commercials.- yes- they are strip clubs.(no\n> > > > > > affiliation) it also airs on 93.7fm.\n> > > > > > how's it goin in the arm-pit of america?\n> > > > > > -cori:)\n> > > > > >\n> > > > > >\n> > > > > >\n> > > > > >\n> > > > > >\n> > > > > > > i forgot you had a wedding. i don't go\nup to\n> > > > austin\n> > > > > > all that much. i\n> > > > > > > usually stay down here and go out. where\ndo\n> > you\n> > > > work\n> > > > > > up there again? i\n> > > > > > > am sure you told me, but i forgot. where\nare\n> > the\n> > > > > > good places to hang\n> > > > > > > out? is it 4th st?\n> > > > > > >\n> > > > > > > > -----Original Message-----\n> > > > > > > > From: \tccates@mail.lbjs.com@ENRON\n> > > > > > > > [mailto:IMCEANOTES-\n> > > > > >\nccates+40mail+2Elbjs+2Ecom+40ENRON@ENRON.com]\n> > On\n> > > > > > > > Behalf Of Cory Cates\n<ccates@mail.lbjs.com>\n> > > > > > > > Sent:\tTuesday, May 29, 2001 3:53 PM\n> > > > > > > > To:\tLenhart, Matthew\n> > > > > > > > Subject:\tRE:\n> > > > > > > >\n> > > > > > > > i was kidding about your\nfriends...besides-\n> > i\n> > > > > > > > definately do not have room to talk.\n> > > > > > > > i guess you didn't remember, i have\n> > a \"wedding\"\n> > > > on\n> > > > > > > > saturday? i have to be in h-town on\nfri.\n> > for\n> > > > the\n> > > > > > > > rehearsal. sucks. you'll have fun\nthough-\n> > do\n> > > > you\n> > > > > > come\n> > > > > > > > to austin a lot? next time i'm in\nhouston\n> > will\n> > > > > > > > probably be father's day.\n> > > > > > > >\n> > > > > > > > i've had just about enough of this place\n> > for one\n> > > > > > day,\n> > > > > > > > so i'm going home now...\n> > > > > > > > have a good day\n> > > > > > > > -cori:)\n> > > > > > > >\n> > > > > > > >\n> > > > > > > >\n> > > > > > > >\n> > > > > > > >\n> > > > > > > > > my friends are liars. this past\nweekend\n> > was\n> > > > an\n> > > > > > > > anomaly. it isn't bad\n> > > > > > > > > to go out and party like a rock star\nevery\n> > > > now and\n> > > > > > > > then. i will be in\n> > > > > > > > > austin this saturday night, so maybe\nwe\n> > can\n> > > > get\n> > > > > > > > together in austin. we\n> > > > > > > > > will probably be at it pretty hard\n> > again. i\n> > > > have\n> > > > > > a\n> > > > > > > > friend coming in\n> > > > > > > > > from new orleans so he will want to\nhit\n> > 6th\n> > > > > > street.\n> > > > > > > > >\n> > > > > > > > > > -----Original Message-----\n> > > > > > > > > > From:\n\tccates@mail.lbjs.com@ENRON\n> > > > > > > > > > [mailto:IMCEANOTES-\n> > > > > > > >\n> > ccates+40mail+2Elbjs+2Ecom+40ENRON@ENRON.com]\n> > > > On\n> > > > > > > > > > Behalf Of Cory Cates\n> > <ccates@mail.lbjs.com>\n> > > > > > > > > > Sent:\tTuesday, May 29, 2001\n2:35 PM\n> > > > > > > > > > To:\tLenhart, Matthew\n> > > > > > > > > > Subject:\tRE:\n> > > > > > > > > >\n> > > > > > > > > > stop making excuses- your friends\nall\n> > said\n> > > > that\n> > > > > > > > you're\n> > > > > > > > > > always very drunk every weekend. ha.\n> > > > > > > > > > i'm back in austin. i did have fun\n> > > > sat.night-\n> > > > > > it\n> > > > > > > > was\n> > > > > > > > > > worth driving in for:)\n> > > > > > > > > > i'm about a quart low today; i drove\n> > back on\n> > > > > > sunday\n> > > > > > > > &\n> > > > > > > > > > spent the rest of the weekend on the\n> > lake.\n> > > > i\n> > > > > > need\n> > > > > > > > to\n> > > > > > > > > > go home.\n> > > > > > > > > > why are you coming up this weekend\n> > again?\n> > > > for\n> > > > > > some\n> > > > > > > > > > reason, i can't remember.\n> > > > > > > > > > -cori\n> > > > > > > > > >\n> > > > > > > > > >\n> > > > > > > > > >\n> > > > > > > > > >\n> > > > > > > > > >\n> > > > > > > > > >\n> > > > > > > > > > > i remember you. i was pretty\ndrunk\n> > > > though.\n> > > > > > > > > > hopefully i didn't make too\n> > > > > > > > > > > much of an ass out of myself. we\nhit\n> > it\n> > > > > > really\n> > > > > > > > hard\n> > > > > > > > > > that night for my\n> > > > > > > > > > > buddy's birthday. how was your\n> > > > bachelorette\n> > > > > > > > party?\n> > > > > > > > > > are you back in\n> > > > > > > > > > > austin now?\n> > > > > > > > > > >\n> > > > > > > > > > > > -----Original Message-----\n> > > > > > > > > > > > From:\n> > \tccates@mail.lbjs.com@ENRON\n> > > > > > > > > > > > [mailto:IMCEANOTES-\n> > > > > > > > > >\n> > > > ccates+40mail+2Elbjs+2Ecom+40ENRON@ENRON.com]\n> > > > > > On\n> > > > > > > > > > > > Behalf Of Cory Cates\n> > > > <ccates@mail.lbjs.com>\n> > > > > > > > > > > > Sent:\tTuesday, May 29, 2001\n> > 11:56 AM\n> > > > > > > > > > > > To:\tLenhart, Matthew\n> > > > > > > > > > > > Subject:\n> > > > > > > > > > > >\n> > > > > > > > > > > > hi matt....\n> > > > > > > > > > > >\n> > > > > > > > > > > > -cori\n> > > > > > > > > > > > (hopefully you remeber me)\n> > > > > > > > > > >\n> > > > > > > > > >\n> > > > > > > > >\n> > > > > > > >\n> > > > > > >\n> > > > > >\n> > > > >\n> > > >\n> > >\n> >\n>"], ["A ClickAtHome Internet Service Provider has indicated that you are\n receiving subsidized Internet service through the program.\n\n 1. If this is correct, no action is required - continue to enjoy your\n Internet Service!\n\n\n 2. If you are NOT receiving Internet service through the ClickAtHome\n program, please email clickathome@enron.com to report the incorrect\n billing on your behalf.\n\n Thank you,\n\n ClickAtHome Team!"], ["The New England Conference of Public Utilities Commissioners (NECUPUC) filed \nan Answer if Support of the Motion of the Maine Public Utilities Commission \nfor Disclosure of Information.\nNECUPUC supports the request for the release of the unredacted copies of \nISO-NE's September 21, 2000 Answer in this case. In the alternative, they \nwould ask that the Commission provide to the regulators that are parties to \nthe proceeding unredacted copies of the ISO's September 21, 2000 Answer \nsubject to an appropriate protective order.\n\n\n\nDuke Energy North America (DENA) filed an Answer that opposes the MPUC \nrequest for public information.\n\nDENA argues that only a three month lag in the release of confidential \ninformation is impermissible under a prior FERC ruling in the NSTAR Services \nCo. case which set out a six-month lag rule for the release of information.\nTheir second argument was that the request seeks information for all NEPOOL \nmarkets and not just the ICAP market which is subject to the suit.\nIf the FERC authorizes the release of confidential information, then it \nshould be subject to a protective order which contains the following:\nThe information may only be used for the purposes of this docket.\nOnly specifically named \"reviewing Reps associated with the MPUC may review \nthe information.\nThe confidential materials may not be removed from the NE-ISO's premises.\nThe reviewing rep must execute a nondisclosure certificate.\n\n\nAnswer to the MPUC's Motion for Disclosure of Information from Northeast \nUtilities Service Company and Select Energy and request for expedited \ncommission action. NUSCO and Select Energy Support MPUC's request for \ndisclosure of information that the ISO has filed under seal, but opposes the \nselective disclosure of this information to the MPUC and other regulatory \ncommissions and not other participants. NUSCO and Select Energy request \nexpedited action due the financial implications and there is also \nconsiderable uncertainty regarding prices in the residual ICAP market in \nJanuary, February and March of 2000 due to the suspended settlement pending \nCommission guidance."]]
\ No newline at end of file
{"results": {"pile_enron": {"word_perplexity": 1.001047500362545, "byte_perplexity": 1.0002230646075219, "bits_per_byte": 0.00022303973231145731}}, "versions": {"pile_enron": 0}}
\ No newline at end of file
{"results": {"pile_enron": {"bits_per_byte": 0.0003163902828673244, "byte_perplexity": 1.000316440339552, "word_perplexity": 1.00224668051869}}, "versions": {"pile_enron": 0}}
\ No newline at end of file
e67d3dbccd47d308bfc5b0e66b76d0dfc5e386ebfa94e056562c2281c395543f
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
{"results": {"pile_europarl": {"word_perplexity": 1.0000576302563544, "byte_perplexity": 1.0000082853120706, "bits_per_byte": 8.285277747607004e-06}}, "versions": {"pile_europarl": 0}}
\ No newline at end of file
{"results": {"pile_europarl": {"bits_per_byte": 8.648858203555344e-06, "byte_perplexity": 1.000008648895605, "word_perplexity": 1.000063506523818}}, "versions": {"pile_europarl": 0}}
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment