Commit e4db76cb authored by haileyschoelkopf's avatar haileyschoelkopf
Browse files

Merge branch 'main' into multimodal-prototyping

parents 6cc6e9cd ad80f555
include: unitxt_tasks.classification.multi_class
task: law_stack_exchange
dataset_name: card=cards.law_stack_exchange,template=templates.classification.multi_class.title
include: unitxt
recipe: card=cards.law_stack_exchange,template=templates.classification.multi_class.title
include: unitxt_tasks.classification.multi_class
task: ledgar
dataset_name: card=cards.ledgar,template=templates.classification.multi_class.title
include: unitxt
recipe: card=cards.ledgar,template=templates.classification.multi_class.title
include: unitxt_tasks.classification.multi_class
task: medical_abstracts
dataset_name: card=cards.medical_abstracts,template=templates.classification.multi_class.title
include: unitxt
recipe: card=cards.medical_abstracts,template=templates.classification.multi_class.title
include: unitxt_tasks.regression.two_texts
task: stsb
dataset_name: card=cards.stsb,template=templates.regression.two_texts.simple
include: unitxt
recipe: card=cards.stsb,template=templates.regression.two_texts.simple
"""
In the dynamic landscape of generative NLP, traditional text processing pipelines limit research flexibility and reproducibility, as they are tailored to specific dataset, task, and model combinations. The escalating complexity, involving system prompts, model-specific formats, instructions, and more, calls for a shift to a structured, modular, and customizable solution.
Addressing this need, we present Unitxt, an innovative library for customizable textual data preparation and evaluation tailored to generative language models. Unitxt natively integrates with common libraries like HuggingFace and LM-eval-harness and deconstructs processing flows into modular components, enabling easy customization and sharing between practitioners. These components encompass model-specific formats, task prompts, and many other comprehensive dataset processing definitions. The Unitxt-Catalog centralizes these components, fostering collaboration and exploration in modern textual data workflows. Beyond being a tool, Unitxt is a community-driven platform, empowering users to build, share, and advance their pipelines collaboratively.
"""
from functools import partial
from typing import Optional
import evaluate
from lm_eval.api.instance import Instance
from lm_eval.api.task import ConfigurableTask
_CITATION = """
@misc{bandel2024unitxt,
title={Unitxt: Flexible, Shareable and Reusable Data Preparation and Evaluation for Generative AI},
author={Elron Bandel and Yotam Perlitz and Elad Venezian and Roni Friedman-Melamed and Ofir Arviv and Matan Orbach and Shachar Don-Yehyia and Dafna Sheinwald and Ariel Gera and Leshem Choshen and Michal Shmueli-Scheuer and Yoav Katz},
year={2024},
eprint={2401.14019},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
def score(items, metric):
predictions, references = zip(*items)
evaluator = evaluate.load("unitxt/metric")
for reference in references:
reference["metrics"] = [metric]
results = evaluator.compute(predictions=predictions, references=references)
return results[0]["score"]["global"]["score"]
class Unitxt(ConfigurableTask):
VERSION = 0
def __init__(
self,
config: Optional[dict] = None,
) -> None:
assert "recipe" in config, "Unitxt task must have a 'recipe' string."
super().__init__(
config={
"metadata": {"version": self.VERSION},
"dataset_kwargs": {"trust_remote_code": True},
"dataset_name": config["recipe"],
"dataset_path": "unitxt/data",
}
)
self.metrics = self.dataset["test"][0]["metrics"]
def has_training_docs(self):
return "train" in self.dataset
def has_validation_docs(self):
return "validation" in self.dataset
def has_test_docs(self):
return "test" in self.dataset
def training_docs(self):
return self.dataset["train"]
def validation_docs(self):
return self.dataset["validation"]
def test_docs(self):
return self.dataset["test"]
def doc_to_text(self, doc):
return doc["source"]
def should_decontaminate(self):
return False
def doc_to_target(self, doc):
doc["target"]
def construct_requests(self, doc, ctx, **kwargs):
"""Uses RequestFactory to construct Requests and returns an iterable of
Requests which will be sent to the LM.
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param ctx: str
The context string, generated by fewshot_context. This includes the natural
language description, as well as the few shot examples, and the question
part of the document for `doc`.
"""
return [
Instance(
request_type="generate_until",
doc=doc,
arguments=(ctx, {"until": ["\n"]}),
idx=0,
**kwargs,
)
]
def process_results(self, doc, results):
"""Take a single document and the LM results and evaluates, returning a
dict where keys are the names of submetrics and values are the values of
the metric for that one document
:param doc:
The document as returned from training_docs, validation_docs, or test_docs.
:param results:
The results of the requests created in construct_requests.
"""
continuation = results[0]
predictions = continuation
references = doc
return {
metric.replace("metrics.", ""): (predictions, references)
for metric in self.metrics
}
def aggregation(self):
"""
:returns: {str: [float] -> float}
A dictionary where keys are the names of submetrics and values are
functions that aggregate a list of metrics
"""
return {
metric.replace("metrics.", ""): partial(score, metric=metric)
for metric in self.metrics
}
def higher_is_better(self):
"""
:returns: {str: bool}
A dictionary where keys are the names of submetrics and values are
whether a higher value of the submetric is better
"""
return {metric.replace("metrics.", ""): True for metric in self.metrics}
include: unitxt_tasks.classification.multi_label
task: unfair_tos
dataset_name: card=cards.unfair_tos,template=templates.classification.multi_label.title
include: unitxt
recipe: card=cards.unfair_tos,template=templates.classification.multi_label.title
class: !function task.Unitxt
coedit_gec
atis
20_newsgroups
ag_news
argument_topic
banking77
claim_stance_topic
cnn_dailymail
dbpedia_14
ethos_binary
financial_tweets
law_stack_exchange
ledgar
medical_abstracts
stsb
unfair_tos
xsum
yahoo_answers_topics
group:
- unitxt
dataset_path: unitxt/data
output_type: generate_until
training_split: train
validation_split: test
doc_to_text: '{{source}}'
doc_to_target: target
process_results: !function 'unitxt_wrapper.process_results'
generation_kwargs:
until:
- </s>
metric_list:
- metric: unitxt_f1_micro
aggregation: unitxt
higher_is_better: true
- metric: unitxt_accuracy
aggregation: unitxt
higher_is_better: true
- metric: unitxt_f1_macro
aggregation: unitxt
higher_is_better: true
metadata:
verison: 1.0
group:
- unitxt
dataset_path: unitxt/data
output_type: generate_until
training_split: train
validation_split: test
doc_to_text: '{{source}}'
doc_to_target: target
process_results: !function 'unitxt_wrapper.process_results'
generation_kwargs:
until:
- </s>
metric_list:
- metric: unitxt_f1_micro_multi_label
aggregation: unitxt
higher_is_better: true
- metric: unitxt_accuracy
aggregation: unitxt
higher_is_better: true
- metric: unitxt_f1_macro_multi_label
aggregation: unitxt
higher_is_better: true
metadata:
verison: 1.0
group:
- unitxt
dataset_path: unitxt/data
output_type: generate_until
training_split: train
validation_split: test
doc_to_text: '{{source}}'
doc_to_target: target
process_results: !function 'unitxt_wrapper.process_results'
generation_kwargs:
until:
- </s>
metric_list:
- metric: unitxt_char_edit_dist_accuracy
aggregation: unitxt
higher_is_better: true
- metric: unitxt_rouge
aggregation: unitxt
higher_is_better: true
- metric: unitxt_char_edit_distance[reference_field=original_text]
aggregation: unitxt
higher_is_better: true
metadata:
verison: 1.0
group:
- unitxt
dataset_path: unitxt/data
output_type: generate_until
training_split: train
validation_split: test
doc_to_text: '{{source}}'
doc_to_target: target
process_results: !function 'unitxt_wrapper.process_results'
generation_kwargs:
until:
- </s>
metric_list:
- metric: unitxt_squad
aggregation: unitxt
higher_is_better: true
metadata:
verison: 1.0
group:
- unitxt
dataset_path: unitxt/data
output_type: generate_until
training_split: train
validation_split: test
doc_to_text: '{{source}}'
doc_to_target: target
process_results: !function 'unitxt_wrapper.process_results'
generation_kwargs:
until:
- </s>
metric_list:
- metric: unitxt_spearman
aggregation: unitxt
higher_is_better: true
metadata:
verison: 1.0
group:
- unitxt
dataset_path: unitxt/data
output_type: generate_until
training_split: train
validation_split: test
doc_to_text: '{{source}}'
doc_to_target: target
process_results: !function 'unitxt_wrapper.process_results'
generation_kwargs:
until:
- </s>
metric_list:
- metric: unitxt_ner
aggregation: unitxt
higher_is_better: true
metadata:
verison: 1.0
group:
- unitxt
dataset_path: unitxt/data
output_type: generate_until
training_split: train
validation_split: test
doc_to_text: '{{source}}'
doc_to_target: target
process_results: !function 'unitxt_wrapper.process_results'
generation_kwargs:
until:
- </s>
metric_list:
- metric: unitxt_rouge
aggregation: unitxt
higher_is_better: true
metadata:
verison: 1.0
try:
from unitxt import evaluate
except ImportError:
raise ImportError(
"Package 'unitxt' is not installed. To install it, use `pip install 'lm_eval[unitxt]'`"
)
from lm_eval.api.registry import AGGREGATION_REGISTRY, METRIC_REGISTRY, register_metric
def unitxt_agg_metric(items):
preds = [pred[0] for pred, _, _ in items]
refs = [ref for _, ref, _ in items]
metric_name = items[0][2].replace("unitxt_", "metrics.")
for ref in refs:
ref["metrics"] = [metric_name]
result_metrics = evaluate(preds, refs)
return result_metrics[0]["score"]["global"]["score"]
AGGREGATION_REGISTRY["unitxt"] = unitxt_agg_metric
def unitxt_metric(items): # This is a passthrough function
return items
def process_results(doc, results):
metrics = doc["metrics"]
scores = {}
for metric in metrics:
metric = metric.replace("metrics.", "unitxt_")
scores[metric] = (results, doc, metric)
if metric not in METRIC_REGISTRY:
register_metric(
metric=metric,
higher_is_better=True,
output_type="generate_until",
aggregation="unitxt",
)(unitxt_metric)
return scores
#
include: unitxt_tasks.summarization.abstractive
task: xsum
dataset_name: card=cards.xsum,template=templates.summarization.abstractive.full
include: unitxt
recipe: card=cards.xsum,template=templates.summarization.abstractive.full
include: unitxt_tasks.classification.multi_class
task: yahoo_answers_topics
dataset_name: card=cards.yahoo_answers_topics,template=templates.classification.multi_class.title
include: unitxt
recipe: card=cards.yahoo_answers_topics,template=templates.classification.multi_class.title
group:
tag:
- unscramble
task: anagrams1
dataset_path: EleutherAI/unscramble
......
group:
tag:
- unscramble
task: anagrams2
dataset_path: EleutherAI/unscramble
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment