"docs/source/tutorials/nasbench_as_dataset.py.md5" did not exist on "14d2966b9e91ae16dcc39de8f41017a75cec8ff9"
Unverified Commit decc533d authored by Malikeh Ehghaghi's avatar Malikeh Ehghaghi Committed by GitHub
Browse files

Add Open Arabic LLM Leaderboard Benchmarks (Full and Light Version) (#2232)



* arabic leaferboard yaml file is added

* arabic toxigen is implemented

* Dataset library is imported

* arabic sciq is added

* util file of arabic toxigen is updated

* arabic race is added

* arabic piqa is implemented

* arabic open qa is added

* arabic copa is implemented

* arabic boolq ia added

* arabic arc easy is added

* arabic arc challenge is added

* arabic exams benchmark is implemented

* arabic hellaswag is added

* arabic leaderboard yaml file metrics are updated

* arabic mmlu benchmarks are added

* arabic mmlu group yaml file is updated

* alghafa benchmarks are added

* acva benchmarks are added

* acva utils.py is updated

* light version of arabic leaderboard benchmarks are added

* bugs fixed

* bug fixed

* bug fixed

* bug fixed

* bug fixed

* bug fixed

* library import bug is fixed

* doc to target updated

* bash file is deleted

* results folder is deleted

* leaderboard groups are added

* full arabic leaderboard groups are added, plus some bug fixes to the light version

* Create README.md

README.md for arabic_leaderboard_complete

* Create README.md

README.md for arabic_leaderboard_light

* Delete lm_eval/tasks/arabic_leaderboard directory

* Update README.md

* Update README.md

adding the Arabic leaderboards to the library

* Update README.md

10% of the training set

* Update README.md

10% of the training set

* revert .gitignore to prev version

* Update lm_eval/tasks/README.md
Co-authored-by: default avatarHailey Schoelkopf <65563625+haileyschoelkopf@users.noreply.github.com>

* updated main README.md

* Update lm_eval/tasks/README.md

* specify machine translated benchmarks (complete)

* specify machine translated benchmarks (light version)

* add alghafa to the related task names (complete and light)

* add 'acva' to the related task names (complete and light)

* add 'arabic_leaderboard' to all the groups (complete and light)

* all dataset - not a random sample

* added more accurate details to the readme file

* added mt_mmlu from okapi

* Update lm_eval/tasks/README.md
Co-authored-by: default avatarHailey Schoelkopf <65563625+haileyschoelkopf@users.noreply.github.com>

* Update lm_eval/tasks/README.md
Co-authored-by: default avatarHailey Schoelkopf <65563625+haileyschoelkopf@users.noreply.github.com>

* updated mt_mmlu readme

* renaming 'alghafa' full and light

* renaming 'arabic_mmlu' light and full

* renaming 'acva' full and light

* update readme and standardize dir/file names

* running pre-commit

---------
Co-authored-by: default avatarshahrzads <sayehban@ualberta.ca>
Co-authored-by: default avatarshahrzads <56282669+shahrzads@users.noreply.github.com>
Co-authored-by: default avatarHailey Schoelkopf <65563625+haileyschoelkopf@users.noreply.github.com>
parent 543617fe
import datasets
import numpy as np
def process_docs(dataset: datasets.Dataset):
def _process_doc(doc):
question = doc["query"]
answer_index = int(doc["label"])
# Dynamically determining the choices by excluding '__few_shots', 'query' and 'label'
choices_keys = [
key for key in doc.keys() if key not in ["query", "label", "__few_shots"]
]
choices = [doc[key] for key in choices_keys]
instruction = "الأسئلة التالية هي أسئلة متعددة الإختيارات مع الجواب الصحيح\n\n"
query = f"{instruction}السؤال: {question}\n"
for index, choice in enumerate(choices):
query += f"{index}) {choice}\n"
query += "الإجابة:"
return {"query": query, "choices": choices, "gold": answer_index}
return dataset.map(_process_doc)
group: arabic_leaderboard_arabic_mt_boolq
task:
- arabic_mt_boolq
aggregate_metric_list:
- metric: acc
aggregation: mean
weight_by_size: true
- metric: acc_norm
aggregation: mean
weight_by_size: true
metadata:
version: 1.0
task: arabic_mt_boolq
dataset_path: OALL/AlGhafa-Arabic-LLM-Benchmark-Translated
dataset_name: boolq_ar
output_type: multiple_choice
training_split: null
validation_split: validation
test_split: test
process_docs: !function utils.process_docs
doc_to_text: "{{query}}"
doc_to_target: "{{gold}}"
doc_to_choice: "choices"
fewshot_split: validation
fewshot_config:
sampler: first_n
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
- metric: acc_norm
aggregation: mean
higher_is_better: true
metadata:
version: 1.0
import datasets
import numpy as np
def process_docs(dataset: datasets.Dataset):
def _process_doc(doc):
question = doc["question"]
passage = doc["passage"]
instruction = "بناء على المقطع التالي، أجب عن السؤال ب نعم أو لا"
query = f"""{instruction}
المقطع :
{passage}
السؤال:
{question}
الإجابة:
"""
return {
"query": query,
"choices": ["نعم", "لا"],
"gold": 0 if doc["answer"] else 1,
}
return dataset.map(_process_doc)
group: arabic_leaderboard_arabic_mt_copa
task:
- arabic_mt_copa
aggregate_metric_list:
- metric: acc
aggregation: mean
weight_by_size: true
- metric: acc_norm
aggregation: mean
weight_by_size: true
metadata:
version: 1.0
task: arabic_mt_copa
dataset_path: OALL/AlGhafa-Arabic-LLM-Benchmark-Translated
dataset_name: copa_ext_ar
output_type: multiple_choice
training_split: null
validation_split: validation
test_split: test
process_docs: !function utils.process_docs
doc_to_text: "{{query}}"
doc_to_target: "{{gold}}"
doc_to_choice: "choices"
fewshot_split: validation
fewshot_config:
sampler: first_n
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
- metric: acc_norm
aggregation: mean
higher_is_better: true
metadata:
version: 1.0
import datasets
import numpy as np
def process_docs(dataset: datasets.Dataset):
def _process_doc(doc):
premise = doc["premise"]
choices = [doc["choice1"], doc["choice2"]]
question_map = {"cause": "لأن", "effect": "لذلك"}
question = question_map[doc["question"]]
answer = doc["label"]
query = "{}، {} :\n0) {}\n1) {}\nالإجابة:".format(
premise, question, choices[0], choices[1]
)
return {"query": query, "choices": choices, "gold": answer}
return dataset.map(_process_doc)
group: arabic_leaderboard_arabic_mt_hellaswag
task:
- arabic_mt_hellaswag
aggregate_metric_list:
- metric: acc
aggregation: mean
weight_by_size: true
- metric: acc_norm
aggregation: mean
weight_by_size: true
metadata:
version: 1.0
task: arabic_mt_hellaswag
dataset_path: OALL/AlGhafa-Arabic-LLM-Benchmark-Translated
dataset_name: hellaswag_okapi_ar
output_type: multiple_choice
training_split: null
validation_split: validation
test_split: test
process_docs: !function utils.process_docs
doc_to_text: "{{query}}"
doc_to_target: "{{gold}}"
doc_to_choice: "choices"
fewshot_split: validation
fewshot_config:
sampler: first_n
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
- metric: acc_norm
aggregation: mean
higher_is_better: true
metadata:
version: 1.0
import re
import datasets
import numpy as np
def process_docs(dataset: datasets.Dataset):
def _process_doc(doc):
ctx = re.sub(r"\[.*?\]", "", doc["ctx"]) # Remove latin words within brackets
endings = [
re.sub(r"\[.*?\]", "", e) for e in eval(doc["endings"])
] # endings is a string representation of a list
answer_index = doc["label"]
instruction = (
"بناء على السياق التالي، اختر النهاية الصحيحة من الاقتراحات التالية"
)
query = f"""{instruction}
السياق:
{ctx}
الاقتراحات:
"""
for i, ending in enumerate(endings):
query += f"{i}) {ending}\n"
query += "الإجابة:"
return {"query": query, "choices": endings, "gold": answer_index}
return dataset.map(_process_doc)
group: arabic_leaderboard_arabic_mt_mmlu
task:
- arabic_mt_mmlu
aggregate_metric_list:
- metric: acc
aggregation: mean
weight_by_size: true
- metric: acc_norm
aggregation: mean
weight_by_size: true
metadata:
version: 1.0
task: arabic_mt_mmlu
dataset_path: OALL/AlGhafa-Arabic-LLM-Benchmark-Translated
dataset_name: mmlu_okapi_ar
output_type: multiple_choice
training_split: null
validation_split: validation
test_split: test
process_docs: !function utils.process_docs
doc_to_text: "{{query}}"
doc_to_target: "{{gold}}"
doc_to_choice: "choices"
fewshot_split: validation
fewshot_config:
sampler: first_n
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
- metric: acc_norm
aggregation: mean
higher_is_better: true
metadata:
version: 1.0
import datasets
import numpy as np
def process_docs(dataset: datasets.Dataset):
def _process_doc(doc):
question = doc["query"]
answer_index = int(doc["label"])
# Dynamically determining the choices by excluding '__few_shots', 'query' and 'label'
choices_keys = [
key for key in doc.keys() if key not in ["query", "label", "__few_shots"]
]
choices = [doc[key] for key in choices_keys]
instruction = "الأسئلة التالية هي أسئلة متعددة الإختيارات مع الجواب الصحيح\n\n"
query = f"{instruction}السؤال: {question}\n"
for index, choice in enumerate(choices):
query += f"{index}) {choice}\n"
query += "الإجابة:"
return {"query": query, "choices": choices, "gold": answer_index}
return dataset.map(_process_doc)
group: arabic_leaderboard_arabic_mt_openbook_qa
task:
- arabic_mt_openbook_qa
aggregate_metric_list:
- metric: acc
aggregation: mean
weight_by_size: true
- metric: acc_norm
aggregation: mean
weight_by_size: true
metadata:
version: 1.0
task: arabic_mt_openbook_qa
dataset_path: OALL/AlGhafa-Arabic-LLM-Benchmark-Translated
dataset_name: openbook_qa_ext_ar
output_type: multiple_choice
training_split: null
validation_split: validation
test_split: test
process_docs: !function utils.process_docs
doc_to_text: "{{query}}"
doc_to_target: "{{gold}}"
doc_to_choice: "choices"
fewshot_split: validation
fewshot_config:
sampler: first_n
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
- metric: acc_norm
aggregation: mean
higher_is_better: true
metadata:
version: 1.0
import datasets
import numpy as np
def process_docs(dataset: datasets.Dataset):
def _process_doc(doc):
question = doc["query"]
answer_index = int(doc["label"])
# Dynamically determining the choices by excluding '__few_shots', 'query' and 'label'
choices_keys = [
key for key in doc.keys() if key not in ["query", "label", "__few_shots"]
]
choices = [doc[key] for key in choices_keys]
instruction = "الأسئلة التالية هي أسئلة متعددة الإختيارات مع الجواب الصحيح\n\n"
query = f"{instruction}السؤال: {question}\n"
for index, choice in enumerate(choices):
query += f"{index}) {choice}\n"
query += "الإجابة:"
return {"query": query, "choices": choices, "gold": answer_index}
return dataset.map(_process_doc)
group: arabic_leaderboard_arabic_mt_piqa
task:
- arabic_mt_piqa
aggregate_metric_list:
- metric: acc
aggregation: mean
weight_by_size: true
- metric: acc_norm
aggregation: mean
weight_by_size: true
metadata:
version: 1.0
task: arabic_mt_piqa
dataset_path: OALL/AlGhafa-Arabic-LLM-Benchmark-Translated
dataset_name: piqa_ar
output_type: multiple_choice
training_split: null
validation_split: validation
test_split: test
process_docs: !function utils.process_docs
doc_to_text: "{{query}}"
doc_to_target: "{{gold}}"
doc_to_choice: "choices"
fewshot_split: validation
fewshot_config:
sampler: first_n
metric_list:
- metric: acc
aggregation: mean
higher_is_better: true
- metric: acc_norm
aggregation: mean
higher_is_better: true
metadata:
version: 1.0
import datasets
import numpy as np
def process_docs(dataset: datasets.Dataset):
def _process_doc(doc):
question = doc["query"]
answer_index = int(doc["label"])
# Dynamically determining the choices by excluding '__few_shots', 'query' and 'label'
choices_keys = [
key for key in doc.keys() if key not in ["query", "label", "__few_shots"]
]
choices = [doc[key] for key in choices_keys]
instruction = "الأسئلة التالية هي أسئلة متعددة الإختيارات مع الجواب الصحيح\n\n"
query = f"{instruction}السؤال: {question}\n"
for index, choice in enumerate(choices):
query += f"{index}) {choice}\n"
query += "الإجابة:"
return {"query": query, "choices": choices, "gold": answer_index}
return dataset.map(_process_doc)
group: arabic_leaderboard_arabic_mt_race
task:
- arabic_mt_race
aggregate_metric_list:
- metric: acc
aggregation: mean
weight_by_size: true
- metric: acc_norm
aggregation: mean
weight_by_size: true
metadata:
version: 1.0
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment